We will use Napier's formulas for a spherical right-angled triangle.
(More information: https://en.wikipedia.org/wiki/Spherical_trigonometry)
Hint : Since it is not specified which side is "90^\\circ" , I chose it myself.
In our case,
1) "c=90^\\circ\\quad a= 49^\\circ 23'\\quad b = 76^\\circ 41'"
Then,
"(Q8)\\quad\\cos a=\\sin b\\cdot\\cos A\\to\\cos A=\\frac{\\cos a}{\\sin b}=\\frac{\\cos(49^\\circ23')}{\\sin(76^\\circ41')}\\\\[0.3cm]\n\\cos A\\approx0.669\\to\\boxed{ A=\\arccos(0.669)\\approx41^\\circ 59'24''}\\\\[0.3cm]\n(Q5)\\quad\\tan B=\\tan b\\cdot\\sin A=\\tan(76^\\circ41')\\cdot\\sin(41^\\circ 59'24'')\\\\[0.3cm]\n\\tan B\\approx2.826\\to\\boxed{B=\\arctan(2.826)\\approx70^\\circ30'40''}\\\\[0.3cm]\n(Q10)\\quad\\cos C=-\\cot a\\cdot\\cot b=-\\cot(76^\\circ41')\\cdot\\cot(49^\\circ 23')\\\\[0.3cm]\n\\cos C\\approx-0.203\\to\\boxed{C=\\arccos(-0.203)\\approx101^\\circ42'}\\\\[0.3cm]"
2) "c=90^\\circ\\quad B = 100^\\circ\\quad b = 50^\\circ10'"
Then,
"(Q9)\\quad\\cos b=\\sin a\\cdot\\cos B\\to\\sin a=\\frac{\\cos b}{\\cos B}=\\frac{\\cos(50^\\circ10')}{\\cos(100^\\circ)}\\\\[0.3cm]\n\\sin a\\approx0.7428\\to\\boxed{a=\\arcsin(0.7428)\\approx47^\\circ58'12''}\\\\[0.3cm]\n(Q4)\\quad\\tan A=\\tan a\\cdot\\sin B=\\tan(47^\\circ58'12'')\\cdot\\sin(100^\\circ)\\\\[0.3cm]\n\\tan A\\approx1.093\\to\\boxed{A=\\arctan(1.093)\\approx47^\\circ32'24''}\\\\[0.3cm]\n(Q1)\\quad\\cos C=-\\cos A\\cdot \\cos B\\to\\cos C=-\\cos(47^\\circ32'24'')\\cdot\\cos(100^\\circ)\\\\[0.3cm]\n\\cos C\\approx0.1172\\to\\boxed{C=\\arccos(0.1172)\\approx83^\\circ16'12''}"
3) "c=90^\\circ\\quad A = 121^\\circ20'\\quad B = 42^\\circ01'"
Then,
"(Q1)\\quad\\cos C=-\\cos A\\cdot\\cos B=-\\cos(121^\\circ20')\\cdot\\cos(42^\\circ01')\\\\[0.3cm]\n\\cos C\\approx0.3863\\to\\boxed{C=\\arccos(0.38630)\\approx67^\\circ16'50''}\\\\[0.3cm]\n(Q4)\\quad\\tan A=\\tan a\\cdot\\sin B\\to\\tan a=\\frac{\\tan A}{\\sin B}=\\frac{\\tan(121^\\circ20')}{\\sin(42^\\circ01')}\\\\[0.3cm]\n\\tan a\\approx-2.454\\to\\boxed{a=\\arctan(-2.454)\\approx 112^\\circ10'10''}\\\\[0.3cm]\n(Q5)\\quad\\tan B=\\tan b\\cdot\\sin A\\to\\tan a=\\frac{\\tan B}{\\sin A}=\\frac{\\tan(42^\\circ01')}{\\sin(121^\\circ20')}\\\\[0.3cm]\n\\tan b\\approx1.055\\to\\boxed{b=\\arctan(1.055)\\approx 46^\\circ31'50''}\\\\[0.3cm]" 4) "c=90^\\circ\\quad a = 60^\\circ35'\\quad B = 122^\\circ18'"
Then,
"(Q4)\\quad\\tan A=\\tan a\\cdot\\sin B\\to\\tan A=\\tan(60^\\circ35')\\cdot\\sin(122^\\circ18')\\\\[0.3cm]\n\\tan A\\approx1.499\\to\\boxed{a=\\arctan(1.499)\\approx 56^\\circ17'24''}\\\\[0.3cm]\n(Q9)\\quad\\cos b=\\sin a\\cdot\\cos B\\to\\cos b=\\sin(60^\\circ35')\\cdot\\cos(122^\\circ18')\\\\[0.3cm]\n\\cos b\\approx-0.4655\\to\\boxed{b=\\arccos(-0.4655)\\approx 117^\\circ42'}\\\\[0.3cm]\n(Q6)\\quad\\tan B=-\\cos a\\cdot\\tan C\\to\\tan C=-\\frac{\\tan B}{\\cos a}\\\\[0.3cm]\n\\tan C\\approx3.221\\to\\boxed{C=\\arctan(3.221)\\approx72^\\circ45'}"
Q.E.D.
Comments
Leave a comment