Question #138991

Solve the following quadrantal spherical triangle.


1.)a= 49° 23' , b = 76° 41'

2.) B = 100° , b = 50° 10' 

3.) A = 121° 20' , B = 42° 01 '

4.) a = 60° 35' , B = 122° 18'  



1
Expert's answer
2020-10-19T17:17:56-0400

We will use Napier's formulas for a spherical right-angled triangle.

(More information: https://en.wikipedia.org/wiki/Spherical_trigonometry)

Hint : Since it is not specified which side is 9090^\circ , I chose it myself.

In our case,


1) c=90a=4923b=7641c=90^\circ\quad a= 49^\circ 23'\quad b = 76^\circ 41'

Then,


(Q8)cosa=sinbcosAcosA=cosasinb=cos(4923)sin(7641)cosA0.669A=arccos(0.669)415924(Q5)tanB=tanbsinA=tan(7641)sin(415924)tanB2.826B=arctan(2.826)703040(Q10)cosC=cotacotb=cot(7641)cot(4923)cosC0.203C=arccos(0.203)10142(Q8)\quad\cos a=\sin b\cdot\cos A\to\cos A=\frac{\cos a}{\sin b}=\frac{\cos(49^\circ23')}{\sin(76^\circ41')}\\[0.3cm] \cos A\approx0.669\to\boxed{ A=\arccos(0.669)\approx41^\circ 59'24''}\\[0.3cm] (Q5)\quad\tan B=\tan b\cdot\sin A=\tan(76^\circ41')\cdot\sin(41^\circ 59'24'')\\[0.3cm] \tan B\approx2.826\to\boxed{B=\arctan(2.826)\approx70^\circ30'40''}\\[0.3cm] (Q10)\quad\cos C=-\cot a\cdot\cot b=-\cot(76^\circ41')\cdot\cot(49^\circ 23')\\[0.3cm] \cos C\approx-0.203\to\boxed{C=\arccos(-0.203)\approx101^\circ42'}\\[0.3cm]


2) c=90B=100b=5010c=90^\circ\quad B = 100^\circ\quad b = 50^\circ10'

Then,



(Q9)cosb=sinacosBsina=cosbcosB=cos(5010)cos(100)sina0.7428a=arcsin(0.7428)475812(Q4)tanA=tanasinB=tan(475812)sin(100)tanA1.093A=arctan(1.093)473224(Q1)cosC=cosAcosBcosC=cos(473224)cos(100)cosC0.1172C=arccos(0.1172)831612(Q9)\quad\cos b=\sin a\cdot\cos B\to\sin a=\frac{\cos b}{\cos B}=\frac{\cos(50^\circ10')}{\cos(100^\circ)}\\[0.3cm] \sin a\approx0.7428\to\boxed{a=\arcsin(0.7428)\approx47^\circ58'12''}\\[0.3cm] (Q4)\quad\tan A=\tan a\cdot\sin B=\tan(47^\circ58'12'')\cdot\sin(100^\circ)\\[0.3cm] \tan A\approx1.093\to\boxed{A=\arctan(1.093)\approx47^\circ32'24''}\\[0.3cm] (Q1)\quad\cos C=-\cos A\cdot \cos B\to\cos C=-\cos(47^\circ32'24'')\cdot\cos(100^\circ)\\[0.3cm] \cos C\approx0.1172\to\boxed{C=\arccos(0.1172)\approx83^\circ16'12''}

3) c=90A=12120B=4201c=90^\circ\quad A = 121^\circ20'\quad B = 42^\circ01'

Then,



(Q1)cosC=cosAcosB=cos(12120)cos(4201)cosC0.3863C=arccos(0.38630)671650(Q4)tanA=tanasinBtana=tanAsinB=tan(12120)sin(4201)tana2.454a=arctan(2.454)1121010(Q5)tanB=tanbsinAtana=tanBsinA=tan(4201)sin(12120)tanb1.055b=arctan(1.055)463150(Q1)\quad\cos C=-\cos A\cdot\cos B=-\cos(121^\circ20')\cdot\cos(42^\circ01')\\[0.3cm] \cos C\approx0.3863\to\boxed{C=\arccos(0.38630)\approx67^\circ16'50''}\\[0.3cm] (Q4)\quad\tan A=\tan a\cdot\sin B\to\tan a=\frac{\tan A}{\sin B}=\frac{\tan(121^\circ20')}{\sin(42^\circ01')}\\[0.3cm] \tan a\approx-2.454\to\boxed{a=\arctan(-2.454)\approx 112^\circ10'10''}\\[0.3cm] (Q5)\quad\tan B=\tan b\cdot\sin A\to\tan a=\frac{\tan B}{\sin A}=\frac{\tan(42^\circ01')}{\sin(121^\circ20')}\\[0.3cm] \tan b\approx1.055\to\boxed{b=\arctan(1.055)\approx 46^\circ31'50''}\\[0.3cm]

4) c=90a=6035B=12218c=90^\circ\quad a = 60^\circ35'\quad B = 122^\circ18'

Then,



(Q4)tanA=tanasinBtanA=tan(6035)sin(12218)tanA1.499a=arctan(1.499)561724(Q9)cosb=sinacosBcosb=sin(6035)cos(12218)cosb0.4655b=arccos(0.4655)11742(Q6)tanB=cosatanCtanC=tanBcosatanC3.221C=arctan(3.221)7245(Q4)\quad\tan A=\tan a\cdot\sin B\to\tan A=\tan(60^\circ35')\cdot\sin(122^\circ18')\\[0.3cm] \tan A\approx1.499\to\boxed{a=\arctan(1.499)\approx 56^\circ17'24''}\\[0.3cm] (Q9)\quad\cos b=\sin a\cdot\cos B\to\cos b=\sin(60^\circ35')\cdot\cos(122^\circ18')\\[0.3cm] \cos b\approx-0.4655\to\boxed{b=\arccos(-0.4655)\approx 117^\circ42'}\\[0.3cm] (Q6)\quad\tan B=-\cos a\cdot\tan C\to\tan C=-\frac{\tan B}{\cos a}\\[0.3cm] \tan C\approx3.221\to\boxed{C=\arctan(3.221)\approx72^\circ45'}

Q.E.D.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS