Question #137551
Express cos^7θ in terms of multiples of angles.
1
Expert's answer
2020-10-12T19:00:58-0400

According to Euler's formula:

zn+zn=2cosnxz^{n}+z^{-n} = 2cosnx

128cos7x=(2cosx)7=(z+z1)7128 \cdot cos^{7}x = (2 \cdot cosx)^{7} = (z + z^{-1})^{7}

Thus, applying binomial formula:

128cos7x=z7+7z5+21z3+35z+35z1+21z3+7z5+z7=2cos7x+14cos5x+42cos3x+70cosx128 \cdot cos^{7}x = z^{7} + 7\cdot z^{5} + 21\cdot z^{3} + 35\cdot {z} + 35\cdot z^{-1} + 21\cdot z^{-3} + 7\cdot z^{-5}+z^{-7} = 2\cdot cos7x + 14\cdot cos5x + 42\cdot cos3x+70\cdot cosx

Thus, cos7x=2cos7x+14cos5x+42cos3x+70cosx128=cos7x+7cos5x+21cos3x+35cosx64cos^{7}x = \frac{2\cdot cos7x + 14\cdot cos5x + 42\cdot cos3x+70\cdot cosx}{128} = \frac{cos7x +7\cdot cos5x + 21\cdot cos3x+35\cdot cosx}{64}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS