According to Euler's formula:
"z^{n}+z^{-n} = 2cosnx"
"128 \\cdot cos^{7}x = (2 \\cdot cosx)^{7} = (z + z^{-1})^{7}"
Thus, applying binomial formula:
"128 \\cdot cos^{7}x = z^{7} + 7\\cdot z^{5} + 21\\cdot z^{3} + 35\\cdot {z} + 35\\cdot z^{-1} + 21\\cdot z^{-3} + 7\\cdot z^{-5}+z^{-7} = 2\\cdot cos7x + 14\\cdot cos5x + 42\\cdot cos3x+70\\cdot cosx"
Thus, "cos^{7}x = \\frac{2\\cdot cos7x + 14\\cdot cos5x + 42\\cdot cos3x+70\\cdot cosx}{128} = \\frac{cos7x +7\\cdot cos5x + 21\\cdot cos3x+35\\cdot cosx}{64}"
Comments
Leave a comment