According to Euler's formula:
zn+z−n=2cosnx
128⋅cos7x=(2⋅cosx)7=(z+z−1)7
Thus, applying binomial formula:
128⋅cos7x=z7+7⋅z5+21⋅z3+35⋅z+35⋅z−1+21⋅z−3+7⋅z−5+z−7=2⋅cos7x+14⋅cos5x+42⋅cos3x+70⋅cosx
Thus, cos7x=1282⋅cos7x+14⋅cos5x+42⋅cos3x+70⋅cosx=64cos7x+7⋅cos5x+21⋅cos3x+35⋅cosx
Comments