(i)Prove thatsin(2A)+sin(2B)+sin(2C)=4sinAsinBsinCSince the figure is a planar triangleA+B+C=πIt is known that,sinP+sinQ=2sin(2P+Q)cos(2P−Q)sin(2A)+sin(2B)+sin(2C)=2sin(A+B)cos(A−B)+sin(2C)=2sin(π−C)cos(A−B)+2sin(C)cos(C)=2sin(C)cos(A−B)+2sin(C)cos(C)=2sin(C)(cos(A−B)+cos(C))It is also known that,cosP+cosQ=2cos(2P+Q)cos(2P−Q)⟹sin(2A)+sin(2B)+sin(2C)=2sin(C)(2cos(2A+C−B)cos(2A−B−C))=4sinCcos(2π−B)cos(2π−A)=4sinCsinBsinA=4sinAsinBsinC(ii)cos(2A)+cos(2B)+cos(2C)=2cos(22(A+B))cos(22(A−B))+cos(2C)=2cos(π−C)cos(A−B)+2cos2C−1=2cosC(cosC−cos(A−B))−1It is also known that,cosP−cosQ=2sin(2P+Q)sin(2P−Q)cos(2A)+cos(2B)+cos(2C)=2cosC(2sin(2A+C−B)sin(2C−A+B))−1=2cosC(2sin(2π−B)sin(2π−A))−1=2cosC(2cosB×2cosA)−1=4cosAcosBcosC−1
Comments
Leave a comment