Answer to Question #137558 in Trigonometry for Axwell Alesso Lee

Question #137558

Using complex numbers, prove that the, angles A, B and C of a planar triangle satisfy the relations

(i) cos^2 A + cos^2 B + cos^2 C = 1 − 2 cos A cos B cos C

(ii) sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C.


1
Expert's answer
2020-10-13T18:58:57-0400

(i)Prove thatsin(2A)+sin(2B)+sin(2C)=4sinAsinBsinCSince the figure is a planar triangleA+B+C=πIt is known that,sinP+sinQ=2sin(P+Q2)cos(PQ2)sin(2A)+sin(2B)+sin(2C)=2sin(A+B)cos(AB)+sin(2C)=2sin(πC)cos(AB)+2sin(C)cos(C)=2sin(C)cos(AB)+2sin(C)cos(C)=2sin(C)(cos(AB)+cos(C))It is also known that,cosP+cosQ=2cos(P+Q2)cos(PQ2)    sin(2A)+sin(2B)+sin(2C)=2sin(C)(2cos(A+CB2)cos(ABC2))=4sinCcos(π2B)cos(π2A)=4sinCsinBsinA=4sinAsinBsinC(ii)cos(2A)+cos(2B)+cos(2C)=2cos(2(A+B)2)cos(2(AB)2)+cos(2C)=2cos(πC)cos(AB)+2cos2C1=2cosC(cosCcos(AB))1It is also known that,cosPcosQ=2sin(P+Q2)sin(PQ2)cos(2A)+cos(2B)+cos(2C)=2cosC(2sin(A+CB2)sin(CA+B2))1=2cosC(2sin(π2B)sin(π2A))1=2cosC(2cosB×2cosA)1=4cosAcosBcosC1\displaystyle(i)\\\textsf{Prove that}\\ \sin(2A) + \sin(2B) + \sin(2C) = 4\sin A \sin B \sin C \\ \textsf{Since the figure is a planar triangle}\\ A + B + C = \pi\\ \textsf{It is known that,}\\ \sin P + \sin Q = 2\sin\left(\frac{P + Q}{2}\right)\cos\left(\frac{P - Q}{2}\right) \\ \begin{aligned} \sin(2A) + \sin(2B) + \sin(2C) &= 2\sin(A + B)\cos(A - B) + \sin(2C)\\ &= 2\sin(\pi - C)\cos(A - B) + 2\sin(C)\cos(C)\\ &= 2\sin(C)\cos(A - B) + 2\sin(C)\cos(C)\\ &= 2\sin(C)(\cos(A - B) + \cos(C)) \end{aligned} \\ \textsf{It is also known that,}\\ \cos P + \cos Q = 2\cos\left(\frac{P + Q}{2}\right)\cos\left(\frac{P - Q}{2}\right) \\ \begin{aligned} \implies \sin(2A) + \sin(2B) + \sin(2C) &= 2\sin(C)\left(2\cos\left(\frac{A + C - B}{2}\right)\cos\left(\frac{A -B - C}{2}\right) \right)\\ &= 4\sin C \cos\left(\frac{\pi}{2} - B\right) \cos\left(\frac{\pi}{2} - A\right) \\ &= 4\sin C \sin B \sin A\\ &= 4\sin A \sin B \sin C \end{aligned}\\ (ii)\\\begin{aligned} \cos(2A) + \cos(2B) + \cos(2C) \\&= 2\cos\left(\frac{2(A + B)}{2}\right)\cos\left(\frac{2(A - B)}{2}\right) + \cos(2C) \\&= 2\cos(\pi - C)\cos(A - B) + 2\cos^2 C - 1 \\&= 2\cos C (\cos C - \cos(A - B)) - 1 \end{aligned}\\ \textsf{It is also known that,}\\ \cos P - \cos Q = 2\sin\left(\frac{P + Q}{2}\right)\sin\left(\frac{P - Q}{2}\right) \\ \begin{aligned} \cos(2A) + \cos(2B) + \cos(2C) \\&= 2\cos C \left(2\sin\left(\frac{A + C - B}{2}\right)\sin\left(\frac{C - A+ B}{2}\right)\right) - 1 \\&= 2\cos C \left(2\sin\left(\frac{\pi}{2} - B\right)\sin\left(\frac{\pi}{2} - A\right)\right) - 1 \\&= 2\cos C(2\cos B \times 2\cos A) - 1 = 4\cos A \cos B \cos C - 1 \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment