1.) 6. a = b = 78°20’’ C = 118°50’
Cosine Law for sides
"\\cos c=\\cos^2 a+\\sin^2 a\\cos C"
"\\cos c=\\cos^2 78\\degree20''+\\sin^2 78\\degree20''\\cos 118\\degree50'\\approx-0.4182"
"c\\approx114\\degree43'26''"
Sine Law
"\\dfrac{\\sin a}{\\sin A}=\\dfrac{\\sin b}{\\sin B}=\\dfrac{\\sin c}{\\sin C}""\\sin A=\\sin B=\\dfrac{\\sin a\\sin C}{\\sin c}"
"\\sin A=\\sin B=\\dfrac{\\sin 78\\degree20''\\sin 118\\degree50'}{\\sin 114\\degree43'26''}"
"A=B=70\\degree37'35''"
Or
2.) A = B = 95°5’ C = 100°10’
Cosine Law for angles
"\\cos B=-\\cos A\\cos C+\\sin A\\sin C\\cos b"
"\\cos C=-\\cos A\\cos B+\\sin A\\sin B\\cos c"
"a=\\cos^{-1}\\dfrac{\\cos(95\\degree5')+\\cos(95\\degree5')\\cos(100\\degree10')}{\\sin(95\\degree5')\\sin(100\\degree10')}"
"a\\approx94\\degree16'5''"
"b\\approx94\\degree16'5''"
"c=\\cos^{-1}\\dfrac{\\cos(100\\degree10')+\\cos^2(95\\degree5')}{\\sin^2(95\\degree5')}"
"c\\approx99\\degree47'15''"
3.) A=B = 72°48’ b = 64°52’
Napier's analogies
"\\tan (\\dfrac{1}{2}c)=\\cos A\\tan a"
"c=2\\tan^{-1}(\\cos (72\\degree48')\\tan (64\\degree52'))\\approx64\\degree26'51''"
Sine Law
"\\dfrac{\\sin a}{\\sin A}=\\dfrac{\\sin b}{\\sin B}=\\dfrac{\\sin c}{\\sin C}""\\sin C=\\dfrac{\\sin c\\sin B}{\\sin b}"
"C=\\sin^{-1}(\\dfrac{\\sin (72\\degree48')\\sin (64\\degree26'51'')}{\\sin (64\\degree52')})"
"C\\approx72\\degree10'15''"
Or
4.) A = C = 50°10’ c = 95°
"a=c=95\\degree"
Napier's analogies
"\\tan (\\dfrac{1}{2}b)=\\cos A\\tan a"
"\\tan (\\dfrac{1}{2}b)=\\cos (52\\degree10')\\tan (95\\degree)\\approx-7.0108"
"{1\\over 2}b>90\\degree=>b>180\\degree"
"a+c+b>95\\degree+95\\degree+180\\degree=370\\degree"
The sum of the three sides of a spherical triangle is less than "360\\degree." Therefore the isosceles spherical triangle with A = C = 50°10’ c = 95° does not exist.
5.) B = C = 78°44’ b = 18°16’
"c=b=18\\degree16'"
Napier's analogies
"\\tan (\\dfrac{1}{2}a)=\\cos B\\tan b"
"a=2\\tan^{-1}(\\cos (78\\degree44')\\tan (18\\degree16'))\\approx7\\degree22'47''"
Sine Law
"\\dfrac{\\sin a}{\\sin A}=\\dfrac{\\sin b}{\\sin B}=\\dfrac{\\sin c}{\\sin C}""\\sin A=\\dfrac{\\sin a\\sin B}{\\sin b}"
"A=\\sin^{-1}(\\dfrac{\\sin (78\\degree44')\\sin (7\\degree22'51'')}{\\sin (18\\degree16')})"
"A\\approx23\\degree12'1''"
Or
Comments
Leave a comment