In case giving a spherical triangle in which one side is 90° , we use the following fundamental rules
sinmiddle=tan(adj.)×tan(adj.)
sinmiddle=cos(opp.)×cos(opp.)
1.) a = 70°10’ b = 52°40’ c = 90°
sin(−(90°−C))=tan(90°−b)×tan(90°−a)cosC=−cota×cotb
C=cos−1(−cot(70°10′)cot(52°40′)≈105°58′4′′
sin(90°−b)=cosB×cos(90°−a)cosB=sinacosb
B=cos−1(sin70°10′cos52°40′)≈49°51′27′′
sin(90°−a)=cosA×cos(90°−b)cosA=sinbcosa
A=cos−1(sin52°40′cos70°10′)≈64°44′28′′
2.) a = 116°53’ A = 122°39’ c = 90°
sin(90°−a)=cosA×cos(90°−b)sinb=cosAcosa
b=sin−1(cos122°39′cos116°53′)≈56°56′35′′
sinB=tanA×tan(90°−a)
B=sin−1(tan116°53′tan122°39′ )≈52°17′50′′
sin(−(90°−C))=tan(90°−b)×tan(90°−a)cosC=−tana×tanb1
C=cos−1(−tan116°53′×tan122°39′1)≈108°57′21′′
3.) b = 69°29.7’ B = 63°4.6’ c = 90°
sinA=tanB×tan(90°−b)
A=sin−1(tan69°29.7′tan63°4.6′)≈47°25.6′
sin(90°−b)=cosB×cos(90°−a)
sina=cosBcosb
a=sin−1(cos63°4.6′cos69°29.7′)≈50°40.8′
sinB=cos(90°−b)×cos(−(90°−C))sinC=sinbsinB
C=sin−1(sin69°29.7′sin63°4.6′)≈72°9.7′
4.) a = 106°38’ b = 36°49’ c = 90°
sin(−(90°−C))=tan(90°−b)×tan(90°−a)cosC=−cota×cotb
C=cos−1(−cot(106°38′)cot(36°49′)≈66°28′41′′
sin(90°−b)=cosB×cos(90°−a)cosB=sinacosb
B=cos−1(sin106°38′cos36°49′)≈49°51′27′′
sin(90°−a)=cosA×cos(90°−b)cosA=sinbcosa
A=cos−1(sin36°49′cos106°38′)≈118°32′
5.) A = 52°55’ b = 73°11’
sinA=tanB×tan(90°−b)tanB=sinA×tanb
B=tan−1(sin52°55′×tan73°11′)≈69°15′2′′
sin(90°−a)=cosA×cos(90°−b)
a=cos−1(cos52°55′×sin73°11′)≈54°44′49′
sin(90°−b)=tan(−(90°−C))×tanA
tanC=−cosbtanA
C=180°−tan−1(cos73°11′tan52°55′)≈102°20′5′′
Comments
Leave a comment