Question #122817
If n is a positive integer, prove that (√3+1)^n +(√3-1)^n = 2^n+1 cosπn/6
1
Expert's answer
2020-07-01T17:26:11-0400

Given that n is a positive integer.

We have to prove

(3+1)n+(31)n=2n+1cosπn6( \sqrt{3}+1 )^n +( \sqrt{3}-1)^n= 2^{n+1} cos\frac{\pi n }{6}

Question is wrong

Take n=2n=2 .

L.H.S=(3+1)2+(31)2L.H.S=(\sqrt{3}+1)^2+(\sqrt {3} -1)^2


=3+1+23+3+123=3+1+2\sqrt{3}+3+1-2\sqrt {3}

=8=8

R.H.S=22+1cos2π6R.H.S=2^{2+1} cos\frac{ 2\pi }{6} =23×12=4=2^3×\frac{1}{2}=4

Hence , L.H.SR.H.SL.H.S \neq R.H.S



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS