Given that n is a positive integer.
We have to prove
"( \\sqrt{3}+1 )^n +( \\sqrt{3}-1)^n= 2^{n+1} cos\\frac{\\pi n }{6}"
Question is wrong
Take "n=2" .
"L.H.S=(\\sqrt{3}+1)^2+(\\sqrt {3} -1)^2"
"=3+1+2\\sqrt{3}+3+1-2\\sqrt {3}"
"=8"
"R.H.S=2^{2+1} cos\\frac{ 2\\pi }{6}" "=2^3\u00d7\\frac{1}{2}=4"
Hence , "L.H.S \\neq R.H.S"
Comments
Leave a comment