(cos"\\theta" +isin"\\theta" )=ei"^\\theta"
(cos2"\\theta" +isin2"\\theta" )=ei2"^\\theta"
(cosn"\\theta" +isinn"\\theta" )=ein"^\\theta"
so
(cos"\\theta" +isin"\\theta" )×(cos2"\\theta" +isin2"\\theta" ).... (Cosn"\\theta" +isinn"\\theta" =1
(ei"^\\theta")x(ei2"^\\theta").....(ein"^\\theta")=1
ei"^\\theta"(1+2+...+n)=1
ei"^\\theta"{n(n+1)/2}=1
now we write ei"^\\theta" in terms of cos and sin
cos[n(n+1)/2]"\\theta" + i sin[n(n+1)/2]"\\theta" = 1
for value of "\\theta"
cos [n(n+1)/2]"\\theta" = 1
[n(n+1)/2 ]"\\theta" = cos-1
[n(n+1)/2]"\\theta" = 2mπ
"\\theta" =4mπ/n(n+1
Comments
Leave a comment