(cos +isin )=ei
(cos2 +isin2 )=ei2
(cosn +isinn )=ein
so
(cos +isin )×(cos2 +isin2 ).... (Cosn +isinn =1
(ei)x(ei2).....(ein)=1
ei(1+2+...+n)=1
ei{n(n+1)/2}=1
now we write ei in terms of cos and sin
cos[n(n+1)/2] + i sin[n(n+1)/2] = 1
for value of
cos [n(n+1)/2] = 1
[n(n+1)/2 ] = cos-1
[n(n+1)/2] = 2mπ
=4mπ/n(n+1
Comments
Leave a comment