Answer to Question #122813 in Trigonometry for Ojugbele Daniel

Question #122813
Prove that the general value of theta which satisfies the equation (costheta+isintheta)×(cos2theta+isintheta).... (Cosntheta+isintheta)=1 is 4mπ over n(n+1) where m is any integer
1
Expert's answer
2020-06-25T18:18:41-0400

(cosθ\theta +isinθ\theta )=eiθ^\theta


(cos2θ\theta +isin2θ\theta )=ei2θ^\theta


(cosnθ\theta +isinnθ\theta )=einθ^\theta


so

(cosθ\theta +isinθ\theta )×(cos2θ\theta +isin2θ\theta ).... (Cosnθ\theta +isinnθ\theta =1

(eiθ^\theta)x(ei2θ^\theta).....(einθ^\theta)=1

eiθ^\theta(1+2+...+n)=1

eiθ^\theta{n(n+1)/2}=1

now we write eiθ^\theta  in terms of cos and sin

cos[n(n+1)/2]θ\theta + i sin[n(n+1)/2]θ\theta = 1

for value of θ\theta

cos [n(n+1)/2]θ\theta = 1

[n(n+1)/2 ]θ\theta = cos-1

[n(n+1)/2]θ\theta = 2mπ

θ\theta =4mπ/n(n+1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment