Let x = cos⁶(θ) + sin⁶(θ)
x = (cos²(θ))³ + (sin²(θ))³
i.e., x = (cos²(θ) + sin²(θ)) × ( (cos²(θ))² + (sin²(θ))² - cos²(θ)sin²(θ))
x = (1) × ( (cos²(θ))² + (sin²(θ))² - cos²(θ)sin²(θ) + 2cos²(θ)sin²(θ) - 2cos²(θ)sin²(θ) )
x = ( (cos²(θ))² + (sin²(θ))² + 2cos²(θ)sin²(θ) ) - 3cos²(θ)sin²(θ)
i.e., x = (cos²(θ) + sin²(θ))² - 3cos²(θ)sin²(θ)
"\\therefore" x = 1 - 3cos²(θ)sin²(θ)
Comments
Leave a comment