To prove "(1+cos\\theta+isin\\theta)^n+(1+cos\\theta-isin\\theta)^n=2^{n+1}cos^n\\frac{\\theta}{2}cos\\frac{n\\theta}{2}"
"we \\space know\\space that \\space (1+cos\\theta)=2cos^2\\frac{\\theta}{2}" and "sin\\theta=2sin\\frac{\\theta}{2}cos\\frac{\\theta}{2}" .
L.H.S
"\\space \\space \\space \\space (1+cos\\theta+isin\\theta)^n+(1+cos\\theta-isin\\theta)^n\\\\ \\space \\\\=(2cos^2\\frac{\\theta}{2}+i2sin\\frac{\\theta}{2}cos\\frac{\\theta}{2})^n+(2cos^2\\frac{\\theta}{2}-i2sin\\frac{\\theta}{2}cos\\frac{\\theta}{2})^n\\\\ \\space \\\\=2^ncos^n\\frac{\\theta}{2}(cos\\frac{\\theta}{2}+isin\\frac{\\theta}{2})^n \\space + 2^ncos^n\\frac{\\theta}{2}(cos\\frac{\\theta}{2}-isin\\frac{\\theta}{2})^n"
"=2^ncos^n\\frac{\\theta}{2}\\bigg((cos\\frac{\\theta}{2}+isin\\frac{\\theta}{2})^n \\space + (cos\\frac{\\theta}{2}-isin\\frac{\\theta}{2})^n\\bigg)"
"Now \\space using \\space DeMoivre's \\space Theorem \\space which \\space says \\\\(cos\\alpha+isin\\alpha)^n=cosn\\alpha \\space + isinn\\alpha"
"=2^ncos^n\\frac{\\theta}{2}\\bigg(cos\\frac{n\\theta}{2}+isin\\frac{n\\theta}{2}\\space + cos\\frac{n\\theta}{2}-isin\\frac{n\\theta}{2}\\bigg)"
"=2^ncos^n\\frac{\\theta}{2}(2cos\\frac{n\\theta}{2})."
"=2^{n+1}cos^n\\frac{\\theta}{2}cos\\frac{n\\theta}{2}. \\\\=R.H.S"
Proved.
Comments
Leave a comment