Question #122816
Prove that (1+costheta+isintheta)^n + (1+costheta-isintheta)^n =2^n+1 cos^n π/2 cosntheta/2
1
Expert's answer
2020-06-21T14:49:59-0400

To prove (1+cosθ+isinθ)n+(1+cosθisinθ)n=2n+1cosnθ2cosnθ2(1+cos\theta+isin\theta)^n+(1+cos\theta-isin\theta)^n=2^{n+1}cos^n\frac{\theta}{2}cos\frac{n\theta}{2}


we know that (1+cosθ)=2cos2θ2we \space know\space that \space (1+cos\theta)=2cos^2\frac{\theta}{2} and sinθ=2sinθ2cosθ2sin\theta=2sin\frac{\theta}{2}cos\frac{\theta}{2} .


L.H.S

    (1+cosθ+isinθ)n+(1+cosθisinθ)n =(2cos2θ2+i2sinθ2cosθ2)n+(2cos2θ2i2sinθ2cosθ2)n =2ncosnθ2(cosθ2+isinθ2)n +2ncosnθ2(cosθ2isinθ2)n\space \space \space \space (1+cos\theta+isin\theta)^n+(1+cos\theta-isin\theta)^n\\ \space \\=(2cos^2\frac{\theta}{2}+i2sin\frac{\theta}{2}cos\frac{\theta}{2})^n+(2cos^2\frac{\theta}{2}-i2sin\frac{\theta}{2}cos\frac{\theta}{2})^n\\ \space \\=2^ncos^n\frac{\theta}{2}(cos\frac{\theta}{2}+isin\frac{\theta}{2})^n \space + 2^ncos^n\frac{\theta}{2}(cos\frac{\theta}{2}-isin\frac{\theta}{2})^n


=2ncosnθ2((cosθ2+isinθ2)n +(cosθ2isinθ2)n)=2^ncos^n\frac{\theta}{2}\bigg((cos\frac{\theta}{2}+isin\frac{\theta}{2})^n \space + (cos\frac{\theta}{2}-isin\frac{\theta}{2})^n\bigg)


Now using DeMoivres Theorem which says(cosα+isinα)n=cosnα +isinnαNow \space using \space DeMoivre's \space Theorem \space which \space says \\(cos\alpha+isin\alpha)^n=cosn\alpha \space + isinn\alpha


=2ncosnθ2(cosnθ2+isinnθ2 +cosnθ2isinnθ2)=2^ncos^n\frac{\theta}{2}\bigg(cos\frac{n\theta}{2}+isin\frac{n\theta}{2}\space + cos\frac{n\theta}{2}-isin\frac{n\theta}{2}\bigg)


=2ncosnθ2(2cosnθ2).=2^ncos^n\frac{\theta}{2}(2cos\frac{n\theta}{2}).


=2n+1cosnθ2cosnθ2.=R.H.S=2^{n+1}cos^n\frac{\theta}{2}cos\frac{n\theta}{2}. \\=R.H.S


Proved.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS