To prove (1+cosθ+isinθ)n+(1+cosθ−isinθ)n=2n+1cosn2θcos2nθ
we know that (1+cosθ)=2cos22θ and sinθ=2sin2θcos2θ .
L.H.S
(1+cosθ+isinθ)n+(1+cosθ−isinθ)n =(2cos22θ+i2sin2θcos2θ)n+(2cos22θ−i2sin2θcos2θ)n =2ncosn2θ(cos2θ+isin2θ)n +2ncosn2θ(cos2θ−isin2θ)n
=2ncosn2θ((cos2θ+isin2θ)n +(cos2θ−isin2θ)n)
Now using DeMoivre′s Theorem which says(cosα+isinα)n=cosnα +isinnα
=2ncosn2θ(cos2nθ+isin2nθ +cos2nθ−isin2nθ)
=2ncosn2θ(2cos2nθ).
=2n+1cosn2θcos2nθ.=R.H.S
Proved.
Comments