We will use the formula for roots of the complex numbers (https://en.wikipedia.org/wiki/De_Moivre%27s_formula#Roots_of_complex_numbers).
For z=r(cosx+isinx),r>0 , n-th root is given by:
zn1=rn1(cosnx+2πk+isinnx+2πk),k=0,...,n−1
Thus, for n=4, and z=cos32π+isin32π we receive:
z41=cos432π+2πk+isin432π+2πk=cos(6π+2πk)+isin(6π+2πk),k=0,...,3
The latter provides the following values:
(z41)0=cos6π+isin6π=23+i21≈0.87+i0.5
(z41)1=cos32π+isin32π=−21+i23≈−0.5+i0.87
(z41)2=cos67π+isin67π=−23−i21≈−0.87−i0.5
(z41)3=cos35π+isin35π=21−i23≈0.5−i0.87
Answer: (z41)0=23+i21≈0.87+i0.5 ; (z41)1=−21+i23≈−0.5+i0.87 ; (z41)2=−23−i21≈−0.87−i0.5 ; (z41)3=21−i23≈0.5−i0.87
(final values are rounded to 2 decimal places).
Comments