We will use the formula for roots of the complex numbers (https://en.wikipedia.org/wiki/De_Moivre%27s_formula#Roots_of_complex_numbers).
For "z=r(cos\\,x+i\\,sin\\,x), r>0" , n-th root is given by:
"z^{\\frac{1}{n}}=r^{\\frac1n}(cos\\,\\frac{x+2\\pi k}{n}+i\\,sin\\,\\frac{x+2\\pi k}{n}),\\,\\,k=0,...,n-1"
Thus, for n=4, and "z=cos\\,\\frac{2\\pi}{3}+i\\,sin\\,\\frac{2\\pi}{3}" we receive:
"z^{\\frac{1}{4}}=cos\\,\\frac{\\frac{2\\pi}{3}+2\\pi k}{4}+i\\,sin\\,\\frac{\\frac{2\\pi}{3}+2\\pi k}{4}=\ncos\\,(\\frac{\\pi}{6}+\\frac{\\pi k}{2})+i\\,sin\\,(\\frac{\\pi}{6}+\\frac{\\pi k}{2}),\\,\\,k=0,...,3"
The latter provides the following values:
"(z^{\\frac{1}{4}})_0=cos\\,\\frac{\\pi}{6}+i\\,sin\\,\\,\\frac{\\pi}{6}=\\frac{\\sqrt{3}}{2}+i\\,\\frac{1}{2}\\approx0.87\\,+i\\,\\,\\,0.5"
"(z^{\\frac{1}{4}})_1=cos\\,\\frac{2\\pi}{3}+i\\,sin\\,\\,\\frac{2\\pi}{3}=-\\frac{{1}}{2}+i\\,\\frac{\\sqrt{3}}{2}\\approx-0.5+i\\,\\,\\,0.87"
"(z^{\\frac{1}{4}})_2=cos\\,\\frac{7\\pi}{6}+i\\,sin\\,\\,\\frac{7\\pi}{6}=-\\frac{\\sqrt{3}}{2}-i\\,\\frac{1}{2}\\approx-0.87\\,-i\\,\\,\\,0.5"
"(z^{\\frac{1}{4}})_3=cos\\,\\frac{5\\pi}{3}+i\\,sin\\,\\,\\frac{5\\pi}{3}=\\frac{{1}}{2}-i\\,\\frac{\\sqrt{3}}{2}\\approx0.5-i\\,\\,\\,0.87"
Answer: "(z^{\\frac{1}{4}})_0=\\frac{\\sqrt{3}}{2}+i\\,\\frac{1}{2}\\approx0.87\\,+i\\,\\,\\,0.5" ; "(z^{\\frac{1}{4}})_1= -\\frac{{1}}{2}+i\\,\\frac{\\sqrt{3}}{2}\\approx-0.5+i\\,\\,\\,0.87" ; "(z^{\\frac{1}{4}})_2= -\\frac{\\sqrt{3}}{2}-i\\,\\frac{1}{2}\\approx-0.87\\,-i\\,\\,\\,0.5" ; "(z^{\\frac{1}{4}})_3= \\frac{{1}}{2}-i\\,\\frac{\\sqrt{3}}{2}\\approx0.5-i\\,\\,\\,0.87"
(final values are rounded to 2 decimal places).
Comments
Leave a comment