x2/a2+y2/b2=1
x=acost,y=bsint
evolute of a curve:
X(t)=x(t)−x′(t)y′′(t)−x′′(t)y′(t)y′(t)(x′(t)2+y′(t)2)
Y(t)=y(t)+x′(t)y′′(t)−x′′(t)y′(t)x′(t)(x′(t)2+y′(t)2)
X(t)=acost−absin2t+abcos2tbcost(b2cos2t+a2sin2t)=acost−acost(b2cos2t+a2sin2t)
Y(t)=bsint−absin2t+abcos2tasint(b2cos2t+a2sin2t)=bsint−bsint(b2cos2t+a2sin2t)
equation of normals ar point (x1,y1):
(y−y1)=−y′(x1)(x−x1)
a2x/x1−b2y/y1=a2−b2
then:
a2x/(acost)−b2y/(bsint)=a2−b2
differentiate respect to t:
xcost+ysint=(a2−b2)cos2t
Comments
Leave a comment