Find the evolute of
x
2
a2
−
y
2
b
2
= 1 as the envelope of the normals.
"x^\n\n2\/\n\na^2\n\n+\n\ny^\n\n2\/\n\nb^\n\n2\n\n= 1"
"x=acost,y=bsint"
evolute of a curve:
"X(t)=x(t)-\\frac{y'(t)(x'(t)^2+y'(t)^2)}{x'(t)y''(t)-x''(t)y'(t)}"
"Y(t)=y(t)+\\frac{x'(t)(x'(t)^2+y'(t)^2)}{x'(t)y''(t)-x''(t)y'(t)}"
"X(t)=acost-\\frac{bcost(b^2cos^2t+a^2sin^2t)}{absin^2t+abcos^2t}=acost-\\frac{cost(b^2cos^2t+a^2sin^2t)}{a}"
"Y(t)=bsint-\\frac{asint(b^2cos^2t+a^2sin^2t)}{absin^2t+abcos^2t}=bsint-\\frac{sint(b^2cos^2t+a^2sin^2t)}{b}"
equation of normals ar point (x1,y1):
"(y-y_1)=-y'(x_1)(x-x_1)"
"a^2x\/x_1 - b^2y\/y_1 = a^2 - b^2"
then:
"a^2x\/(acost) - b^2y\/(bsint) = a^2 - b^2"
differentiate respect to t:
"xcost+ysint=(a^2-b^2)cos2t"
Comments
Leave a comment