Answer to Question #281790 in Differential Geometry | Topology for chaitu

Question #281790

Find the evolute of

x

2

a2

y

2

b

2

= 1 as the envelope of the normals.


1
Expert's answer
2021-12-23T17:30:47-0500

x2/a2+y2/b2=1x^ 2/ a^2 + y^ 2/ b^ 2 = 1

x=acost,y=bsintx=acost,y=bsint


evolute of a curve:

X(t)=x(t)y(t)(x(t)2+y(t)2)x(t)y(t)x(t)y(t)X(t)=x(t)-\frac{y'(t)(x'(t)^2+y'(t)^2)}{x'(t)y''(t)-x''(t)y'(t)}


Y(t)=y(t)+x(t)(x(t)2+y(t)2)x(t)y(t)x(t)y(t)Y(t)=y(t)+\frac{x'(t)(x'(t)^2+y'(t)^2)}{x'(t)y''(t)-x''(t)y'(t)}


X(t)=acostbcost(b2cos2t+a2sin2t)absin2t+abcos2t=acostcost(b2cos2t+a2sin2t)aX(t)=acost-\frac{bcost(b^2cos^2t+a^2sin^2t)}{absin^2t+abcos^2t}=acost-\frac{cost(b^2cos^2t+a^2sin^2t)}{a}


Y(t)=bsintasint(b2cos2t+a2sin2t)absin2t+abcos2t=bsintsint(b2cos2t+a2sin2t)bY(t)=bsint-\frac{asint(b^2cos^2t+a^2sin^2t)}{absin^2t+abcos^2t}=bsint-\frac{sint(b^2cos^2t+a^2sin^2t)}{b}


equation of normals ar point (x1,y1):

(yy1)=y(x1)(xx1)(y-y_1)=-y'(x_1)(x-x_1)

a2x/x1b2y/y1=a2b2a^2x/x_1 - b^2y/y_1 = a^2 - b^2


then:

a2x/(acost)b2y/(bsint)=a2b2a^2x/(acost) - b^2y/(bsint) = a^2 - b^2

differentiate respect to t:

xcost+ysint=(a2b2)cos2txcost+ysint=(a^2-b^2)cos2t

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment