The curvature of the curve given by the vector function r is
k(u)=∣r′(u)∣3∣r′(u)×r′′(u)∣
r′(u)=⟨1,u2u−(1+u),u2−2u2−(1−u2)⟩
=⟨1,−u21,−(1+u21⟩
r′′(u)=⟨0,u32,u32⟩
r′(u)×r′′(u)=∣∣i10j−1/u22/u3k−1−1/u22/u3∣∣
=(−2/u5+2/u3+2/u5)i−(2/u3)j+()2/u3k
=(2/u3)i−(2/u3)j+(2/u3)k
∣r′(u)∣=1+1/u4+1+2/u2+1/u4
=u22u4+u2+1
∣r′(u)×r′′(u)∣=u2∣u∣6
k(u)=u2∣u∣6⋅22(u4+u2+1)3/2u6
k(u)=2(u4+u2+1)3/23u2∣u∣
The torsion of the curve given by the vector function r is
τ(u)=∣r′(u)×r′′(u)∣2(r′(u)×r′′(u))⋅r′′′(u)
r′′′(u)=⟨0,−u46,−u46⟩
(r′(u)×r′′(u))⋅r′′′(u)=0+12/u7−12/u7=0
τ(u)=0
Comments