The curvature of the curve given by the vector function r is
k(u)=∣r′(u)∣3∣r′(u)×r′′(u)∣​
r′(u)=⟨1,u2u−(1+u)​,u2−2u2−(1−u2)​⟩
=⟨1,−u21​,−(1+u21​⟩
r′′(u)=⟨0,u32​,u32​⟩
r′(u)×r′′(u)=∣∣​i10​j−1/u22/u3​k−1−1/u22/u3​∣∣​
=(−2/u5+2/u3+2/u5)i−(2/u3)j+()2/u3k
=(2/u3)i−(2/u3)j+(2/u3)k
∣r′(u)∣=1+1/u4+1+2/u2+1/u4​
=u22​​u4+u2+1​
∣r′(u)×r′′(u)∣=u2∣u∣6​​
k(u)=u2∣u∣6​​⋅22​(u4+u2+1)3/2u6​
k(u)=2(u4+u2+1)3/23​u2∣u∣​
The torsion of the curve given by the vector function r is
τ(u)=∣r′(u)×r′′(u)∣2(r′(u)×r′′(u))⋅r′′′(u)​
r′′′(u)=⟨0,−u46​,−u46​⟩
(r′(u)×r′′(u))⋅r′′′(u)=0+12/u7−12/u7=0
Ï„(u)=0
Comments