The curvature of the curve given by the vector function r \bm r r is
k ( u ) = ∣ r ′ ( u ) × r ′ ′ ( u ) ∣ ∣ r ′ ( u ) ∣ 3 k(u)=\dfrac{|\bm r'(u)\times\bm r''(u)|}{|\bm r'(u)|^3} k ( u ) = ∣ r ′ ( u ) ∣ 3 ∣ r ′ ( u ) × r ′′ ( u ) ∣
r ′ ( u ) = ⟨ 1 , u − ( 1 + u ) u 2 , − 2 u 2 − ( 1 − u 2 ) u 2 ⟩ \bm r'(u)=\langle 1 , \dfrac{u-(1+u)}{u^2}, \dfrac{-2u^2-(1-u^2)}{u^2}\rangle r ′ ( u ) = ⟨ 1 , u 2 u − ( 1 + u ) , u 2 − 2 u 2 − ( 1 − u 2 ) ⟩
= ⟨ 1 , − 1 u 2 , − ( 1 + 1 u 2 ⟩ =\langle 1 , -\dfrac{1}{u^2}, -(1+\dfrac{1}{u^2}\rangle = ⟨ 1 , − u 2 1 , − ( 1 + u 2 1 ⟩
r ′ ′ ( u ) = ⟨ 0 , 2 u 3 , 2 u 3 ⟩ \bm r''(u)=\langle 0 , \dfrac{2}{u^3}, \dfrac{2}{u^3}\rangle r ′′ ( u ) = ⟨ 0 , u 3 2 , u 3 2 ⟩
r ′ ( u ) × r ′ ′ ( u ) = ∣ i j k 1 − 1 / u 2 − 1 − 1 / u 2 0 2 / u 3 2 / u 3 ∣ \bm r'(u)\times\bm r''(u)=\begin{vmatrix}
\bm i & \bm j & \bm k \\
1 & -1/u^2 & -1-1/u^2 \\
0 & 2/u^3 & 2/u^3 \\
\end{vmatrix} r ′ ( u ) × r ′′ ( u ) = ∣ ∣ i 1 0 j − 1/ u 2 2/ u 3 k − 1 − 1/ u 2 2/ u 3 ∣ ∣
= ( − 2 / u 5 + 2 / u 3 + 2 / u 5 ) i − ( 2 / u 3 ) j + ( ) 2 / u 3 k =(-2/u^5+2/u^3+2/u^5)\bm i-(2/u^3)\bm j+()2/u^3\bm k = ( − 2/ u 5 + 2/ u 3 + 2/ u 5 ) i − ( 2/ u 3 ) j + ( ) 2/ u 3 k
= ( 2 / u 3 ) i − ( 2 / u 3 ) j + ( 2 / u 3 ) k =(2/u^3)\bm i-(2/u^3)\bm j+(2/u^3)\bm k = ( 2/ u 3 ) i − ( 2/ u 3 ) j + ( 2/ u 3 ) k
∣ r ′ ( u ) ∣ = 1 + 1 / u 4 + 1 + 2 / u 2 + 1 / u 4 |\bm r'(u)|=\sqrt{1+1/u^4+1+2/u^2+1/u^4} ∣ r ′ ( u ) ∣ = 1 + 1/ u 4 + 1 + 2/ u 2 + 1/ u 4
= 2 u 2 u 4 + u 2 + 1 =\dfrac{\sqrt{2}}{u^2}\sqrt{u^4+u^2+1} = u 2 2 u 4 + u 2 + 1
∣ r ′ ( u ) × r ′ ′ ( u ) ∣ = 6 u 2 ∣ u ∣ |\bm r'(u)\times\bm r''(u)|=\dfrac{\sqrt{6}}{u^2|u|} ∣ r ′ ( u ) × r ′′ ( u ) ∣ = u 2 ∣ u ∣ 6
k ( u ) = 6 u 2 ∣ u ∣ ⋅ u 6 2 2 ( u 4 + u 2 + 1 ) 3 / 2 k(u)=\dfrac{\sqrt{6}}{u^2|u|}\cdot\dfrac{u^6}{2\sqrt{2}(u^4+u^2+1)^{3/2}} k ( u ) = u 2 ∣ u ∣ 6 ⋅ 2 2 ( u 4 + u 2 + 1 ) 3/2 u 6
k ( u ) = 3 u 2 ∣ u ∣ 2 ( u 4 + u 2 + 1 ) 3 / 2 k(u)=\dfrac{\sqrt{3}u^2|u|}{2(u^4+u^2+1)^{3/2}} k ( u ) = 2 ( u 4 + u 2 + 1 ) 3/2 3 u 2 ∣ u ∣
The torsion of the curve given by the vector function r \bm r r is
τ ( u ) = ( r ′ ( u ) × r ′ ′ ( u ) ) ⋅ r ′ ′ ′ ( u ) ∣ r ′ ( u ) × r ′ ′ ( u ) ∣ 2 \tau(u)=\dfrac{(\bm r'(u)\times\bm r''(u))\cdot\bm r'''(u)}{|\bm r'(u)\times\bm r''(u)|^2} τ ( u ) = ∣ r ′ ( u ) × r ′′ ( u ) ∣ 2 ( r ′ ( u ) × r ′′ ( u )) ⋅ r ′′′ ( u )
r ′ ′ ′ ( u ) = ⟨ 0 , − 6 u 4 , − 6 u 4 ⟩ \bm r'''(u)=\langle 0 , -\dfrac{6}{u^4}, -\dfrac{6}{u^4}\rangle r ′′′ ( u ) = ⟨ 0 , − u 4 6 , − u 4 6 ⟩
( r ′ ( u ) × r ′ ′ ( u ) ) ⋅ r ′ ′ ′ ( u ) = 0 + 12 / u 7 − 12 / u 7 = 0 (\bm r'(u)\times\bm r''(u))\cdot\bm r'''(u)=0+12/u^7-12/u^7=0 ( r ′ ( u ) × r ′′ ( u )) ⋅ r ′′′ ( u ) = 0 + 12/ u 7 − 12/ u 7 = 0
τ ( u ) = 0 \tau(u)=0 τ ( u ) = 0
Comments