4.
x=at2,y=2at
evolute of a curve is the locus of all its centers of curvature:
X(t)=x(t)−x′(t)y′′(t)−x′′(t)y′(t)y′(t)(x′(t)2+y′(t)2)
Y(t)=y(t)+x′(t)y′′(t)−x′′(t)y′(t)x′(t)(x′(t)2+y′(t)2)
x′=2at,x′′=2a
y′=2a,y′′=0
X(t)=at2−−4a22a(4a2t2+4a2)=3at2+2a
Y(t)=2at+−4a22at(4a2t2+4a2)=−2at3
5.
The envelope of the family of curves is a curve such that at each point it touches tangentially one of the curves of the family.
y=mx±a2m2−b
f(x,y,m)=y−mx±a2m2−b=0
fm′(x,y,m)=−x±m/a2m2−b=0
±a2m2−b=mx−y
−x+mx−ym=0
xy−mx2+m=0
m=x2−1xy
(y−x2−1x2y)2=(x2−1)2a2x2y2−b
6.
x/a+y/b=1
f(x,y,a)=x/a+y/b−1=0
b=1−a
f(x,y,a)=x/a+y/(1−a)−1=0
fa′(x,y,a)=−x/a2+y/(1−a)2=0
x(1−a)2=ya2
x/a+x(1+a)/a2−1=0
x/(1−b)+x(2−b)/(b−1)2−1=0
−x(b−1)+x(2−b)−(b−1)2=0
x(3−2b)=(b−1)2
7.
x2/a2+y2/b2=1
x=acost,y=bsint
evolute of a curve:
X(t)=x(t)−x′(t)y′′(t)−x′′(t)y′(t)y′(t)(x′(t)2+y′(t)2)
Y(t)=y(t)+x′(t)y′′(t)−x′′(t)y′(t)x′(t)(x′(t)2+y′(t)2)
X(t)=acost−absin2t+abcos2tbcost(b2cos2t+a2sin2t)=acost−acost(b2cos2t+a2sin2t)
Y(t)=bsint−absin2t+abcos2tasint(b2cos2t+a2sin2t)=bsint−bsint(b2cos2t+a2sin2t)
equation of normals ar point (x1,y1):
(y−y1)=−y′(x1)(x−x1)
a2x/x1−b2y/y1=a2−b2
Comments