4. Find the evolute of the rectangular hyperbola y
2 = 4ax. Ans: 27ay2 = 4(x −
2a)
3
Hint: Take P (at2
, 2at) be any point on the parabola.
5. Find the envelope of the family of lines of the form y = mx±
√︀
a2m2 − b
2. Ans:
x
2
a2
−
y
2
b
2
= 1
6. Find the envelope of the family of lines of the form
x
a
+
y
b
= 1 subject to the
condition a + b = 1. Ans: √
x +
√
b = 1
7. Find the evolute of
x
2
a2
+
y
2
b
2
= 1 as the envelope of the normals. Ans: (ax)
2/3 +
(by)
2/3 = (a
2 − b
2
)
2/3
4.
"x=at^2,y=2at"
evolute of a curve is the locus of all its centers of curvature:
"X(t)=x(t)-\\frac{y'(t)(x'(t)^2+y'(t)^2)}{x'(t)y''(t)-x''(t)y'(t)}"
"Y(t)=y(t)+\\frac{x'(t)(x'(t)^2+y'(t)^2)}{x'(t)y''(t)-x''(t)y'(t)}"
"x'=2at,x''=2a"
"y'=2a,y''=0"
"X(t)=at^2-\\frac{2a(4a^2t^2+4a^2)}{-4a^2}=3at^2+2a"
"Y(t)=2at+\\frac{2at(4a^2t^2+4a^2)}{-4a^2}=-2at^3"
5.
The envelope of the family of curves is a curve such that at each point it touches tangentially one of the curves of the family.
"y = mx\u00b1\\sqrt{a^2m^2 \u2212 b}"
"f(x,y,m)= y - mx\u00b1\\sqrt{a^2m^2 \u2212 b}=0"
"f'_m(x,y,m)=-x\u00b1m\/\\sqrt{a^2m^2 \u2212 b}=0"
"\u00b1\\sqrt{a^2m^2 \u2212 b}=mx-y"
"-x+\\frac{m}{mx-y}=0"
"xy-mx^2+m=0"
"m=\\frac{xy}{x^2-1}"
"(y-\\frac{x^2y}{x^2-1})^2=\\frac{a^2x^2y^2}{(x^2-1)^2}-b"
6.
"x\/\n\na\n\n+\n\ny\/\n\nb\n\n= 1"
"f(x,y,a)=x\/a+y\/b-1=0"
"b=1-a"
"f(x,y,a)=x\/a+y\/(1-a)-1=0"
"f'_a(x,y,a)=-x\/a^2+y\/(1-a)^2=0"
"x(1-a)^2=ya^2"
"x\/a+x(1+a)\/a^2-1=0"
"x\/(1-b)+x(2-b)\/(b-1)^2-1=0"
"-x(b-1)+x(2-b)-(b-1)^2=0"
"x(3-2b)=(b-1)^2"
7.
"x^\n\n2\/\n\na^2\n\n+\n\ny^\n\n2\/\n\nb^\n\n2\n\n= 1"
"x=acost,y=bsint"
evolute of a curve:
"X(t)=x(t)-\\frac{y'(t)(x'(t)^2+y'(t)^2)}{x'(t)y''(t)-x''(t)y'(t)}"
"Y(t)=y(t)+\\frac{x'(t)(x'(t)^2+y'(t)^2)}{x'(t)y''(t)-x''(t)y'(t)}"
"X(t)=acost-\\frac{bcost(b^2cos^2t+a^2sin^2t)}{absin^2t+abcos^2t}=acost-\\frac{cost(b^2cos^2t+a^2sin^2t)}{a}"
"Y(t)=bsint-\\frac{asint(b^2cos^2t+a^2sin^2t)}{absin^2t+abcos^2t}=bsint-\\frac{sint(b^2cos^2t+a^2sin^2t)}{b}"
equation of normals ar point (x1,y1):
"(y-y_1)=-y'(x_1)(x-x_1)"
"a^2x\/x_1 - b^2y\/y_1 = a^2 - b^2"
Comments
Leave a comment