Find the curvature, the radius and the center of curvature at a point.
r = sin 3 theta , theta = 0
"r'=3\\cos 3\\theta, r''=-9\\sin3\\theta""K=\\dfrac{|(\\sin3\\theta)^2+2(3\\cos3\\theta)^2+9(\\sin3\\theta)^2|}{[(\\sin3\\theta)^2+(3\\cos 3\\theta)^2]^{3\/2}}"
"=\\dfrac{10+8(\\cos3\\theta)^2}{[1+8(\\cos 3\\theta)^2]^{3\/2}}"
"\\theta=0"
"r(0)=0, r'(0)=3, r''(0)=0""K=\\dfrac{|(0)^2+2(3)^2-0(0)|}{[(0)^2+(3)^2]^{3\/2}}=\\dfrac{2}{3}"
The radius of curvature of a curve at a point is called the inverse of the curvature "K" of the curve at this point:
"x_C=x-\\dfrac{y'(1+(y')^2)}{y''}"
"x=r\\cos\\theta=\\sin(3\\theta)\\cos \\theta""y=r\\sin\\theta=\\sin(3\\theta)\\sin \\theta"
"y'_x=\\dfrac{y'_\\theta}{x'_\\theta}=\\dfrac{r'\\sin \\theta+r\\cos \\theta}{r'\\cos\\theta-r\\sin \\theta}"
"(y'_x)'_{\\theta}=\\dfrac{(r''\\sin \\theta+r'\\cos\\theta)(r'\\cos\\theta-r\\sin \\theta)}{(r'\\cos\\theta-r\\sin \\theta)^2}"
"+\\dfrac{(r'\\cos \\theta-r\\sin \\theta)(r'\\cos\\theta-r\\sin \\theta)}{(r'\\cos\\theta-r\\sin \\theta)^2}"
"-\\dfrac{(r''\\cos \\theta-r'\\sin\\theta)(r'\\sin \\theta+r\\cos \\theta)}{(r'\\cos\\theta-r\\sin \\theta)^2}"
"-\\dfrac{(-r'\\sin\\theta-r\\cos \\theta)(r'\\sin \\theta+r\\cos \\theta)}{(r'\\cos\\theta-r\\sin \\theta)^2}"
"y''_{xx}=\\dfrac{(r''\\sin \\theta+r'\\cos\\theta)(r'\\cos\\theta-r\\sin \\theta)}{(r'\\cos\\theta-r\\sin \\theta)^3}"
"+\\dfrac{(r'\\cos \\theta-r\\sin \\theta)(r'\\cos\\theta-r\\sin \\theta)}{(r'\\cos\\theta-r\\sin \\theta)^3}"
"-\\dfrac{(r''\\cos \\theta-r'\\sin\\theta)(r'\\sin \\theta+r\\cos \\theta)}{(r'\\cos\\theta-r\\sin \\theta)^3}"
"-\\dfrac{(-r'\\sin\\theta-r\\cos \\theta)(r'\\sin \\theta+r\\cos \\theta)}{(r'\\cos\\theta-r\\sin \\theta)^3}"
"\\theta=0"
"y'_{x}(0)=\\dfrac{3(0)+0(1)}{3(1)-0(0)}=0"
"y''_{xx}(0)=\\dfrac{(0+3)(3-0)}{(3)^3}"
"+\\dfrac{(3-0)(3-0)}{(3)^3}"
"-\\dfrac{(0-0)(0+0)}{(3)^3}"
"-\\dfrac{(0-0)(0+0)}{(3)^3}=\\dfrac{2}{3}"
"x_C=0-\\dfrac{0(1+(0)^2)}{\\dfrac{2}{3}}=0"
"y_C=0+\\dfrac{1+(0)^2}{\\dfrac{2}{3}}=\\dfrac{3}{2}"
"C(0, \\dfrac{3}{2})"
Comments
Leave a comment