Question #271939

Find the curvature, the radius and the center of curvature at a point.


y=sin x, x = pi/2


1
Expert's answer
2021-12-06T16:39:24-0500
K=y[1+(y)2]3/2K=\dfrac{|y''|}{[1+(y')^2]^{3/2}}

y=cosx,y=sinxy'=\cos x, y''=-\sin x

K=sinx[1+cos2x]3/2K=\dfrac{|-\sin x|}{[1+\cos ^2 x]^{3/2}}

x=π/2x=\pi/2

K=sin(π/2)[1+cos2(π/2)]3/2=1K=\dfrac{|-\sin (\pi/2)|}{[1+\cos ^2 (\pi/2)]^{3/2}}=1



The radius of curvature of a curve at a point is called the inverse of the curvature KK of the curve at this point:


R=1K=1R=\dfrac{1}{K}=1

xC=xy(1+(y)2)yx_C=x-\dfrac{y'(1+(y')^2)}{y''}

yC=y+1+(y)2yy_C=y+\dfrac{1+(y')^2}{y''}

x=π/2x=\pi/2

y(π/2)=sin(π/2)=1y(\pi/2)=\sin(\pi/2)=1

y(π/2)=cos(π/2)=0y'(\pi/2)=-\cos(\pi/2)=0

y(π/2)=sin(π/2)=1y''(\pi/2)=-\sin(\pi/2)=-1

xC=π/20(1+(0)2)1=π/2x_C=\pi/2-\dfrac{0(1+(0)^2)}{-1}=\pi/2

yC=1+1+(0)21=0y_C=1+\dfrac{1+(0)^2}{-1}=0

C(π/2,0)C(\pi/2, 0)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS