K=[1+(y′)2]3/2∣y′′∣
y′=cosx,y′′=−sinx
K=[1+cos2x]3/2∣−sinx∣ x=π/2
K=[1+cos2(π/2)]3/2∣−sin(π/2)∣=1
The radius of curvature of a curve at a point is called the inverse of the curvature K of the curve at this point:
R=K1=1
xC=x−y′′y′(1+(y′)2)
yC=y+y′′1+(y′)2 x=π/2
y(π/2)=sin(π/2)=1
y′(π/2)=−cos(π/2)=0
y′′(π/2)=−sin(π/2)=−1
xC=π/2−−10(1+(0)2)=π/2
yC=1+−11+(0)2=0 C(π/2,0)
Comments