Find the curvature, the radius of curvature and the center of curvature having a parametric equations at the given point:
y=e^x , (0,1)
Solution;
y=exy=e^xy=ex
P(x0,y0)=(0,1)P(x_0,y_0)=(0,1)P(x0,y0)=(0,1)
y′=exy'=e^xy′=ex
y′(0)=1y'(0)=1y′(0)=1
y′′=exy''=e^xy′′=ex
y′′(0)=1y''(0)=1y′′(0)=1
Radius of curvature;
R=(1+y′(x0)2)32y′′(x0)R=\frac{(1+y'(x_0)^2)^{\frac32}}{y''(x_0)}R=y′′(x0)(1+y′(x0)2)23
By substitution ;
R=(1+1)321=23=22R=\frac{(1+1)^{\frac32}}{1}=\sqrt{2^3}=2\sqrt2R=1(1+1)23=23=22
The curvature;
k=1R=122k=\frac1R=\frac{1}{2\sqrt2}k=R1=221
The centre of curvature;
Let P be the center of curvature , given as (a,b)
a=xo−dydx[1+(dydx)2d2ydx2a=x_o-\frac{\frac{dy}{dx}[1+(\frac{dy}{dx})^2}{\frac{d^2y}{dx^2}}a=xo−dx2d2ydxdy[1+(dxdy)2
a=0+e2xex=e0=1a=0+\frac{e^{2x}}{e^x}=e^0=1a=0+exe2x=e0=1
b=yo+1+(dydx)2d2ydx2b=y_o+\frac{1+(\frac{dy}{dx})^2}{\frac{d^2y}{dx^2}}b=yo+dx2d2y1+(dxdy)2
b=1+1+e2xex=1+2=3b=1+\frac{1+e^{2x}}{e^x}=1+2=3b=1+ex1+e2x=1+2=3
Therefore;
P=(1,3)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments