Solution;
y = e x y=e^x y = e x
P ( x 0 , y 0 ) = ( 0 , 1 ) P(x_0,y_0)=(0,1) P ( x 0 , y 0 ) = ( 0 , 1 )
y ′ = e x y'=e^x y ′ = e x
y ′ ( 0 ) = 1 y'(0)=1 y ′ ( 0 ) = 1
y ′ ′ = e x y''=e^x y ′′ = e x
y ′ ′ ( 0 ) = 1 y''(0)=1 y ′′ ( 0 ) = 1
Radius of curvature;
R = ( 1 + y ′ ( x 0 ) 2 ) 3 2 y ′ ′ ( x 0 ) R=\frac{(1+y'(x_0)^2)^{\frac32}}{y''(x_0)} R = y ′′ ( x 0 ) ( 1 + y ′ ( x 0 ) 2 ) 2 3
By substitution ;
R = ( 1 + 1 ) 3 2 1 = 2 3 = 2 2 R=\frac{(1+1)^{\frac32}}{1}=\sqrt{2^3}=2\sqrt2 R = 1 ( 1 + 1 ) 2 3 = 2 3 = 2 2
The curvature;
k = 1 R = 1 2 2 k=\frac1R=\frac{1}{2\sqrt2} k = R 1 = 2 2 1
The centre of curvature;
Let P be the center of curvature , given as (a,b)
a = x o − d y d x [ 1 + ( d y d x ) 2 d 2 y d x 2 a=x_o-\frac{\frac{dy}{dx}[1+(\frac{dy}{dx})^2}{\frac{d^2y}{dx^2}} a = x o − d x 2 d 2 y d x d y [ 1 + ( d x d y ) 2
a = 0 + e 2 x e x = e 0 = 1 a=0+\frac{e^{2x}}{e^x}=e^0=1 a = 0 + e x e 2 x = e 0 = 1
b = y o + 1 + ( d y d x ) 2 d 2 y d x 2 b=y_o+\frac{1+(\frac{dy}{dx})^2}{\frac{d^2y}{dx^2}} b = y o + d x 2 d 2 y 1 + ( d x d y ) 2
b = 1 + 1 + e 2 x e x = 1 + 2 = 3 b=1+\frac{1+e^{2x}}{e^x}=1+2=3 b = 1 + e x 1 + e 2 x = 1 + 2 = 3
Therefore;
P=(1,3)
Comments