Find Torison r=(a (3u, u³), 3au², 3a (3u+u³)
"r'=\\langle -3au^2, 6au, 9a (1+u^2)\\rangle"
"r''=\\langle -6au, 6a, 18au\\rangle"
"r'''=\\langle -6a, 0, 18a\\rangle"
"r'\\times r''=\\begin{vmatrix}\n i & j & k \\\\\n -3au^2 & 6au & 9a(1+u^2)\\\\\n-6au & 6a & 18au\n\\end{vmatrix}"
"=i(108a^2u^2-54a^2(1+u^2))"
"-j(-54a^2u^3+54a^2u(1+u^2))"
"+k(-18a^2u^2+36a^2u^2)"
"=54a^2(u^2-1)i-54a^2uj+18a^2u^2k"
"(r'\\times r'')\\cdot r'''=54a^2(u^2-1)(-6a)-0+18a^2u^2(18a)"
"=-324a^3u^2+324a^3+324a^3u^2=324a^3"
"||r'\\times r''||^2=(54a^2(u^2-1))^2+(-54a^2u)^2+(18a^2u^2)^2"
"=324a^4(9u^4-18u^2+9+9u^2+u^4)"
"=324a^4(10u^4-9u^2+9)"
"\\tau=\\dfrac{(r'\\times r'')\\cdot r'''}{||r'\\times r''||^2}"
"=\\dfrac{324a^3}{324a^4(10u^4-9u^2+9)}=\\dfrac{1}{a(10u^4-9u^2+9)}"
"\\tau=\\dfrac{1}{a(10u^4-9u^2+9)}"
Comments
Leave a comment