Answer to Question #265931 in Differential Geometry | Topology for Khizar

Question #265931

Find Torison r=(a (3u, u³), 3au², 3a (3u+u³)



1
Expert's answer
2021-11-16T15:32:59-0500
r=a(3au3),3au2,3a(3u+u3)r=\langle a (3a-u^3), 3au^2, 3a (3u+u^3)\rangle

r=3au2,6au,9a(1+u2)r'=\langle -3au^2, 6au, 9a (1+u^2)\rangle

r=6au,6a,18aur''=\langle -6au, 6a, 18au\rangle

r=6a,0,18ar'''=\langle -6a, 0, 18a\rangle

r×r=ijk3au26au9a(1+u2)6au6a18aur'\times r''=\begin{vmatrix} i & j & k \\ -3au^2 & 6au & 9a(1+u^2)\\ -6au & 6a & 18au \end{vmatrix}

=i(108a2u254a2(1+u2))=i(108a^2u^2-54a^2(1+u^2))

j(54a2u3+54a2u(1+u2))-j(-54a^2u^3+54a^2u(1+u^2))

+k(18a2u2+36a2u2)+k(-18a^2u^2+36a^2u^2)

=54a2(u21)i54a2uj+18a2u2k=54a^2(u^2-1)i-54a^2uj+18a^2u^2k

(r×r)r=54a2(u21)(6a)0+18a2u2(18a)(r'\times r'')\cdot r'''=54a^2(u^2-1)(-6a)-0+18a^2u^2(18a)

=324a3u2+324a3+324a3u2=324a3=-324a^3u^2+324a^3+324a^3u^2=324a^3

r×r2=(54a2(u21))2+(54a2u)2+(18a2u2)2||r'\times r''||^2=(54a^2(u^2-1))^2+(-54a^2u)^2+(18a^2u^2)^2

=324a4(9u418u2+9+9u2+u4)=324a^4(9u^4-18u^2+9+9u^2+u^4)

=324a4(10u49u2+9)=324a^4(10u^4-9u^2+9)

τ=(r×r)rr×r2\tau=\dfrac{(r'\times r'')\cdot r'''}{||r'\times r''||^2}

=324a3324a4(10u49u2+9)=1a(10u49u2+9)=\dfrac{324a^3}{324a^4(10u^4-9u^2+9)}=\dfrac{1}{a(10u^4-9u^2+9)}

τ=1a(10u49u2+9)\tau=\dfrac{1}{a(10u^4-9u^2+9)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment