Question #265938

find curvature r = (4/5 Cost, 1-sint, -3/2 Cost)

1
Expert's answer
2021-11-17T00:38:11-0500

r=[45cos(t),(1sin(t)),32cos(t)]r = [\frac{4}{5} cos(t), (1-sin(t)), -\frac{3}{2} cos(t)]

Since f(t), g(t), and h(t) are the components of the vector r(t), then f, g, and h are real-valued functions called the component functions of r and we can write


r(t)=45cos(t)i+(1sin(t))j32cos(t)kr(t)=\frac{4}{5} cos(t) i + (1-sin(t)) j - \frac{3}{2} cos(t) k


r(t)=45sin(t)icos(t)j+32sin(t)kr'(t)=-\frac{4}{5} sin(t) i - cos(t) j + \frac{3}{2} sin(t) k

r(t)=45cos(t)i+sin(t)j+32cos(t)kr''(t)=-\frac{4}{5} cos(t) i + sin(t) j + \frac{3}{2} cos(t) k


So the curvature is

κ(t)=r(t)×r(t)r(t)3κ(t)=\frac{\vert r'(t)× r''(t)\vert}{{\vert r'(t)\vert}^{3}}


r(t)×r(t)=ijk45sintcost32sint45costsint32costr'(t)× r''(t)=\begin{vmatrix} i & j & k \\ -\frac{4}{5} sint & -cost & \frac{3}{2} sint\\ -\frac{4}{5} cost & sint & \frac{3}{2} cost \end{vmatrix}


r(t)×r(t)=(32cos2t32sin2t)i(1210cost.sint+1210cost.sint)j+(45sin2t45cos2t)r'(t)× r''(t)=(-\frac{3}{2}cos^{2}t -\frac{3}{2}sin^{2}t)i -(-\frac{12}{10}cost.sint +\frac{12}{10}cost.sint)j +(-\frac{4}{5}sin^{2}t -\frac{4}{5}cos^{2}t)


r(t)×r(t)=32(cos2t+sin2t)i0j45(sin2t+cos2t)kr'(t)× r''(t)=-\frac{3}{2}(cos^{2}t+sin^{2}t)i -0j -\frac{4}{5}(sin^{2}t +cos^{2}t)k


r(t)×r(t)=32i+0j45kr'(t)× r''(t)=-\frac{3}{2}i +0j -\frac{4}{5}k

So Now

r(t)×r(t)=[(32)2+(45)2]1/2\vert r'(t)× r''(t)\vert ={[(-\frac{3}{2})^2+(-\frac{4}{5})^2]}^{1/2}


=[94+1625]1/2={[\tfrac{9}{4}+\tfrac{16}{25}]}^{1/2} =[289100]1/2={[\frac{289}{100}]}^{1/2} =1710=\frac{17}{10}



r(t)×r(t)=1710\vert r'(t)× r''(t)\vert =\frac{17}{10}


r(t)3=[(45sint)2+(cost)2+(32sint)2]3/2{\vert r'(t)\vert}^3={[(-\frac{4}{5}sint)^2+(cost)^{2}+(-\frac{3}{2}sint)^2]}^{3/2}


r(t)3=[1625sin2t+cos2t+94sin2t]3/2{\vert r'(t)\vert}^3={[\frac{16}{25}sin^2t+cos^2t+\frac{9}{4}sin^2t]}^{3/2}


r(t)3=[189100sin2t+cos2t]3/2{\vert r'(t)\vert}^3={[\frac{189}{100}sin^2t+cos^2t]}^{3/2}

r(t)3=[189100sin2t+1sin2t]3/2=[1+189100100sin2t]3/2{\vert r'(t)\vert}^3={[\frac{189}{100}sin^2t+1-sin^2t]}^{3/2}={[1+\frac{189-100}{100}sin^2t]}^{3/2}


r(t)3=[1+89100sin2t]3/2{\vert r'(t)\vert}^3={[1+\frac{89}{100}sin^2t]}^{3/2}


κ(t)=r(t)×r(t)r(t)3=1710[189100sin2t+cos2t]3/2κ(t)=\frac{\vert r'(t)× r''(t)\vert}{{\vert r'(t)\vert}^{3}} =\frac{\frac{17}{10}}{{[\frac{189}{100}sin^2t+cos^2t]}^{3/2}}



So the curvature is ...


κ(t)=1710[189100sin2t+cos2t]3/2=1710[1+89100sin2t]3/2κ(t)=\frac{\frac{17}{10}}{{[\frac{189}{100}sin^2t+cos^2t]}^{3/2}} =\frac{\frac{17}{10}}{{[1+\frac{89}{100}sin^2t]}^{3/2}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS