r = [ 4 5 c o s ( t ) , ( 1 − s i n ( t ) ) , − 3 2 c o s ( t ) ] r = [\frac{4}{5} cos(t), (1-sin(t)), -\frac{3}{2} cos(t)] r = [ 5 4 cos ( t ) , ( 1 − s in ( t )) , − 2 3 cos ( t )]
Since f(t), g(t), and h(t) are the components of the vector r(t), then f, g, and h are real-valued functions called the component functions of r and we can write
r ( t ) = 4 5 c o s ( t ) i + ( 1 − s i n ( t ) ) j − 3 2 c o s ( t ) k r(t)=\frac{4}{5} cos(t) i + (1-sin(t)) j - \frac{3}{2} cos(t) k r ( t ) = 5 4 cos ( t ) i + ( 1 − s in ( t )) j − 2 3 cos ( t ) k
r ′ ( t ) = − 4 5 s i n ( t ) i − c o s ( t ) j + 3 2 s i n ( t ) k r'(t)=-\frac{4}{5} sin(t) i - cos(t) j + \frac{3}{2} sin(t) k r ′ ( t ) = − 5 4 s in ( t ) i − cos ( t ) j + 2 3 s in ( t ) k
r ′ ′ ( t ) = − 4 5 c o s ( t ) i + s i n ( t ) j + 3 2 c o s ( t ) k r''(t)=-\frac{4}{5} cos(t) i + sin(t) j + \frac{3}{2} cos(t) k r ′′ ( t ) = − 5 4 cos ( t ) i + s in ( t ) j + 2 3 cos ( t ) k
So the curvature is
κ ( t ) = ∣ r ′ ( t ) × r ′ ′ ( t ) ∣ ∣ r ′ ( t ) ∣ 3 κ(t)=\frac{\vert r'(t)× r''(t)\vert}{{\vert r'(t)\vert}^{3}} κ ( t ) = ∣ r ′ ( t ) ∣ 3 ∣ r ′ ( t ) × r ′′ ( t ) ∣
r ′ ( t ) × r ′ ′ ( t ) = ∣ i j k − 4 5 s i n t − c o s t 3 2 s i n t − 4 5 c o s t s i n t 3 2 c o s t ∣ r'(t)× r''(t)=\begin{vmatrix}
i & j & k \\
-\frac{4}{5} sint & -cost & \frac{3}{2} sint\\
-\frac{4}{5} cost & sint & \frac{3}{2} cost
\end{vmatrix} r ′ ( t ) × r ′′ ( t ) = ∣ ∣ i − 5 4 s in t − 5 4 cos t j − cos t s in t k 2 3 s in t 2 3 cos t ∣ ∣
r ′ ( t ) × r ′ ′ ( t ) = ( − 3 2 c o s 2 t − 3 2 s i n 2 t ) i − ( − 12 10 c o s t . s i n t + 12 10 c o s t . s i n t ) j + ( − 4 5 s i n 2 t − 4 5 c o s 2 t ) r'(t)× r''(t)=(-\frac{3}{2}cos^{2}t -\frac{3}{2}sin^{2}t)i -(-\frac{12}{10}cost.sint +\frac{12}{10}cost.sint)j +(-\frac{4}{5}sin^{2}t -\frac{4}{5}cos^{2}t) r ′ ( t ) × r ′′ ( t ) = ( − 2 3 co s 2 t − 2 3 s i n 2 t ) i − ( − 10 12 cos t . s in t + 10 12 cos t . s in t ) j + ( − 5 4 s i n 2 t − 5 4 co s 2 t )
r ′ ( t ) × r ′ ′ ( t ) = − 3 2 ( c o s 2 t + s i n 2 t ) i − 0 j − 4 5 ( s i n 2 t + c o s 2 t ) k r'(t)× r''(t)=-\frac{3}{2}(cos^{2}t+sin^{2}t)i -0j -\frac{4}{5}(sin^{2}t +cos^{2}t)k r ′ ( t ) × r ′′ ( t ) = − 2 3 ( co s 2 t + s i n 2 t ) i − 0 j − 5 4 ( s i n 2 t + co s 2 t ) k
r ′ ( t ) × r ′ ′ ( t ) = − 3 2 i + 0 j − 4 5 k r'(t)× r''(t)=-\frac{3}{2}i +0j -\frac{4}{5}k r ′ ( t ) × r ′′ ( t ) = − 2 3 i + 0 j − 5 4 k
So Now
∣ r ′ ( t ) × r ′ ′ ( t ) ∣ = [ ( − 3 2 ) 2 + ( − 4 5 ) 2 ] 1 / 2 \vert r'(t)× r''(t)\vert ={[(-\frac{3}{2})^2+(-\frac{4}{5})^2]}^{1/2} ∣ r ′ ( t ) × r ′′ ( t ) ∣ = [( − 2 3 ) 2 + ( − 5 4 ) 2 ] 1/2
= [ 9 4 + 16 25 ] 1 / 2 ={[\tfrac{9}{4}+\tfrac{16}{25}]}^{1/2} = [ 4 9 + 25 16 ] 1/2 = [ 289 100 ] 1 / 2 ={[\frac{289}{100}]}^{1/2} = [ 100 289 ] 1/2 = 17 10 =\frac{17}{10} = 10 17
∣ r ′ ( t ) × r ′ ′ ( t ) ∣ = 17 10 \vert r'(t)× r''(t)\vert =\frac{17}{10} ∣ r ′ ( t ) × r ′′ ( t ) ∣ = 10 17
∣ r ′ ( t ) ∣ 3 = [ ( − 4 5 s i n t ) 2 + ( c o s t ) 2 + ( − 3 2 s i n t ) 2 ] 3 / 2 {\vert r'(t)\vert}^3={[(-\frac{4}{5}sint)^2+(cost)^{2}+(-\frac{3}{2}sint)^2]}^{3/2} ∣ r ′ ( t ) ∣ 3 = [( − 5 4 s in t ) 2 + ( cos t ) 2 + ( − 2 3 s in t ) 2 ] 3/2
∣ r ′ ( t ) ∣ 3 = [ 16 25 s i n 2 t + c o s 2 t + 9 4 s i n 2 t ] 3 / 2 {\vert r'(t)\vert}^3={[\frac{16}{25}sin^2t+cos^2t+\frac{9}{4}sin^2t]}^{3/2} ∣ r ′ ( t ) ∣ 3 = [ 25 16 s i n 2 t + co s 2 t + 4 9 s i n 2 t ] 3/2
∣ r ′ ( t ) ∣ 3 = [ 189 100 s i n 2 t + c o s 2 t ] 3 / 2 {\vert r'(t)\vert}^3={[\frac{189}{100}sin^2t+cos^2t]}^{3/2} ∣ r ′ ( t ) ∣ 3 = [ 100 189 s i n 2 t + co s 2 t ] 3/2
∣ r ′ ( t ) ∣ 3 = [ 189 100 s i n 2 t + 1 − s i n 2 t ] 3 / 2 = [ 1 + 189 − 100 100 s i n 2 t ] 3 / 2 {\vert r'(t)\vert}^3={[\frac{189}{100}sin^2t+1-sin^2t]}^{3/2}={[1+\frac{189-100}{100}sin^2t]}^{3/2} ∣ r ′ ( t ) ∣ 3 = [ 100 189 s i n 2 t + 1 − s i n 2 t ] 3/2 = [ 1 + 100 189 − 100 s i n 2 t ] 3/2
∣ r ′ ( t ) ∣ 3 = [ 1 + 89 100 s i n 2 t ] 3 / 2 {\vert r'(t)\vert}^3={[1+\frac{89}{100}sin^2t]}^{3/2} ∣ r ′ ( t ) ∣ 3 = [ 1 + 100 89 s i n 2 t ] 3/2
κ ( t ) = ∣ r ′ ( t ) × r ′ ′ ( t ) ∣ ∣ r ′ ( t ) ∣ 3 = 17 10 [ 189 100 s i n 2 t + c o s 2 t ] 3 / 2 κ(t)=\frac{\vert r'(t)× r''(t)\vert}{{\vert r'(t)\vert}^{3}} =\frac{\frac{17}{10}}{{[\frac{189}{100}sin^2t+cos^2t]}^{3/2}} κ ( t ) = ∣ r ′ ( t ) ∣ 3 ∣ r ′ ( t ) × r ′′ ( t ) ∣ = [ 100 189 s i n 2 t + co s 2 t ] 3/2 10 17
So the curvature is ...
κ ( t ) = 17 10 [ 189 100 s i n 2 t + c o s 2 t ] 3 / 2 = 17 10 [ 1 + 89 100 s i n 2 t ] 3 / 2 κ(t)=\frac{\frac{17}{10}}{{[\frac{189}{100}sin^2t+cos^2t]}^{3/2}} =\frac{\frac{17}{10}}{{[1+\frac{89}{100}sin^2t]}^{3/2}} κ ( t ) = [ 100 189 s i n 2 t + co s 2 t ] 3/2 10 17 = [ 1 + 100 89 s i n 2 t ] 3/2 10 17
Comments