Question #271915

Find the curvature, the radius of curvature and the center of curvature having a parametric equations at the given point:



x = 3t ^ 2 , y = t ^ 3 - 3t at t = 2


1
Expert's answer
2021-11-29T19:30:01-0500

K=xyxy[(x)2+(y)2]3/2K=\dfrac{|x'y''-x''y'|}{[(x')^2+(y')^2]^{3/2}}

xt=6t,xtt=6x'_t=6t, x''_{tt}=6

yt=3t23,ytt=6t3y'_t=3t^2-3,y''_{tt}=6t-3

K=6t(6t3)6(3t23)[(6t)2+(3t23)2]3/2K=\dfrac{|6t(6t-3)-6(3t^2-3)|}{[(6t)^2+(3t^2-3)^2]^{3/2}}

t=2t=2

K=6(2)(6(2)3)6(3(2)23)[(6(2))2+(3(2)23)2]3/2=2125K=\dfrac{|6(2)(6(2)-3)-6(3(2)^2-3)|}{[(6(2))^2+(3(2)^2-3)^2]^{3/2}}=\dfrac{2}{125}


=0.016=0.016

The radius of curvature of a curve at a point is called the inverse of the curvature KK of the curve at this point:


R=1K=62.5R=\dfrac{1}{K}=62.5

yx=ytxt=3t236t=t212ty'_x=\dfrac{y'_t}{x'_t}=\dfrac{3t^2-3}{6t}=\dfrac{t^2-1}{2t}

(yx)t=2t2t2+12t2=t2+12t2(y'_x)'_t=\dfrac{2t^2-t^2+1}{2t^2}=\dfrac{t^2+1}{2t^2}

yxx=t2+12t2(6t)=t2+112t3y''_{xx}=\dfrac{t^2+1}{2t^2(6t)}=\dfrac{t^2+1}{12t^3}

xC=xy(1+(y)2)yx_C=x-\dfrac{y'(1+(y')^2)}{y''}

yC=y+1+(y)2yy_C=y+\dfrac{1+(y')^2}{y''}

t=2t=2


x=3(2)2=12,y=(2)33(2)=2x=3(2)^2=12, y=(2)^3-3(2)=2

y=(2)212(2)=14y'=\dfrac{(2)^2-1}{2(2)}=\dfrac{1}{4}

y=(2)2+112(2)3=596y''=\dfrac{(2)^2+1}{12(2)^3}=\dfrac{5}{96}

xC=1214(1+(14)2)596=6.9x_C=12-\dfrac{\dfrac{1}{4}(1+(\dfrac{1}{4})^2)}{\dfrac{5}{96}}=6.9

yC=2+1+(14)2596=32.4y_C=2+\dfrac{1+(\dfrac{1}{4})^2}{\dfrac{5}{96}}=32.4

C(6.9,32.4)C(6.9, 32.4)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS