r = 4cos2θ
r1= dθdr=−8sin2θ
r2= dθ2d2r=−16cos2θ
Curvature at (r,θ) = (r2+r12)3/2r2+2r12−rr2
r(θ=12π)=4cos(6π)=23
r1(θ=12π)= −8sin(6π)=−4
r2(θ=12π)= −16cos(6π)=−83
rr2 at (θ=12π)= −23.83=−48
Therefore curvature at (θ=12π)=
((23)2+(−4)2)3/2(23)2+2(−4)2+48 = (28)3/292 = 2(7)3/223
and radius of curvature = 232(7)3/2
Comments