Question #271919

Find the curvature, the radius of curvature and the center of curvature having a parametric equations at the given point:



r = 4cos 2theta , theta = 1/12 * pi


1
Expert's answer
2021-12-01T11:27:13-0500

r = 4cos2θ\theta


r1= drdθ=8sin2θ\frac{dr}{d\theta}=-8sin2\theta

r2= d2rdθ2=16cos2θ\frac{d²r}{d\theta^{2}}=-16cos2\theta

Curvature at (r,θ)\theta) = r2+2r12rr2(r2+r12)3/2\frac{r²+2r_{1}^{2}-rr_{2}}{(r²+r_{1}²)^{3/2}}

r(θ=π12)=4cos(π6)=23\theta=\frac{π}{12})=4cos(\frac{π}{6})=2\sqrt{3}

r1(θ=π12)=\theta=\frac{π}{12})= 8sin(π6)=4-8sin(\frac{π}{6})=-4

r2(θ=π12)=\theta=\frac{π}{12})= 16cos(π6)=83-16cos(\frac{π}{6})=-8\sqrt{3}

rr2 at (θ=π12)=(\theta = \frac{π}{12})= 23.83=48-2\sqrt{3}.8\sqrt{3}=-48

Therefore curvature at (θ=π12)=(\theta = \frac{π}{12})=

(23)2+2(4)2+48((23)2+(4)2)3/2\frac{(2\sqrt{3})²+2(-4)²+48}{((2\sqrt{3})²+(-4)²)^{3/2}} = 92(28)3/2\frac{92}{(28)^{3/2}} = 232(7)3/2\frac{23}{2(7)^{3/2}}

and radius of curvature = 2(7)3/223\frac{2(7)^{3/2}}{23}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS