Question #271941

Find the curvature, the radius and the center of curvature at a point.


x=t, y=1/t ; t=1


1
Expert's answer
2021-12-06T12:11:57-0500

curvature:

K=xyyx((x)2+(y)2)3/2K=\frac{|x'y''-y'x''|}{((x')^2+(y')^2)^{3/2}}


x=1,x=0x'=1,x''=0

y=1/t2,y=2/t3y'=-1/t^2,y''=2/t^3


K=2(1+1)3/2=12K=\frac{2}{(1+1)^{3/2}}=\frac{1}{\sqrt 2}


radius of curvature:

R=1/K=2R=1/K=\sqrt 2


 center of curvature:

xc=x0+Rsinθx_c=x_0+Rsin|\theta|

yc=y0+Rcosθy_c=y_0+Rcos|\theta|

where tanθtan\theta is slope of tangent

tanθ=f(x0)tan\theta=f'(x_0)

x0=1,y0=1x_0=1,y_0=1

f(x)=y/x=1/t2f'(x)=y'/x'=-1/t^2

f(x0)=1f'(x_0)=-1

θ=45°|\theta|=45\degree


xc=1+1=2x_c=1+1=2

yc=1+1=2y_c=1+1=2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS