Find the curvature, the radius and the center of curvature at a point.
x=t, y=1/t ; t=1
curvature:
"K=\\frac{|x'y''-y'x''|}{((x')^2+(y')^2)^{3\/2}}"
"x'=1,x''=0"
"y'=-1\/t^2,y''=2\/t^3"
"K=\\frac{2}{(1+1)^{3\/2}}=\\frac{1}{\\sqrt 2}"
radius of curvature:
"R=1\/K=\\sqrt 2"
center of curvature:
"x_c=x_0+Rsin|\\theta|"
"y_c=y_0+Rcos|\\theta|"
where "tan\\theta" is slope of tangent
"tan\\theta=f'(x_0)"
"x_0=1,y_0=1"
"f'(x)=y'\/x'=-1\/t^2"
"f'(x_0)=-1"
"|\\theta|=45\\degree"
"x_c=1+1=2"
"y_c=1+1=2"
Comments
Leave a comment