Question #281786


1. Find the radius of curvature (ROC) at (a cos3 θ, a sin3


θ) on the curve x

2/3 +


y

2/3 = a

2/3



2. Find the radius of curvature (ROC) for the curve x = a(cos θ + θ sin θ), y =

a(sin θ − θ cos θ).


1
Expert's answer
2021-12-22T05:27:55-0500

1.

The parametric equations are


x=acos3θ=a4(3cosθ+cos3θ),x=a\cos^3 \theta=\dfrac{a}{4}(3\cos \theta+\cos 3\theta),

y=asin3θ=a4(3sinθsin3θ),y=a\sin^3 \theta=\dfrac{a}{4}(3\sin \theta-\sin 3\theta),

x=a4(3sinθ3sin3θ)x'=\dfrac{a}{4}(-3\sin \theta-3\sin 3\theta)

x=a4(3cosθ9cos3θ)x''=\dfrac{a}{4}(-3\cos \theta-9\cos 3\theta)

y=a4(3cosθ3cos3θ)y'=\dfrac{a}{4}(3\cos \theta-3\cos 3\theta)

y=a4(3sinθ+9sin3θ)y''=\dfrac{a}{4}(-3\sin \theta+9\sin 3\theta)

R=((x)2+(y)2)3/2xyxyR=\dfrac{((x')^2+(y')^2)^{3/2}}{|x'y''-x''y'|}

(x)2+(y)2(x')^2+(y')^2

=a216(9sin2θ+9sin23θ+18sinθsin3θ)=\dfrac{a^2}{16}(9\sin^2 \theta+9\sin^2 3\theta+18\sin\theta \sin 3\theta)

+a216(9cos2θ+9cos23θ18cosθcos3θ)+\dfrac{a^2}{16}(9\cos^2 \theta+9\cos^2 3\theta-18\cos\theta \cos 3\theta)

=9a28(1cos4θ)=9a24sin22θ=\dfrac{9a^2}{8}(1-\cos4\theta)=\dfrac{9a^2}{4}\sin^22\theta


((x)2+(y)2)3/2=27a38sin32θ((x')^2+(y')^2)^{3/2}=\dfrac{27a^3}{8}\sin^32\theta

xyxyx'y''-x''y'

=a216(9sin2θ27sin23θ18sinθsin3θ)=\dfrac{a^2}{16}(9\sin^2 \theta-27\sin^2 3\theta-18\sin\theta \sin 3\theta)

a216(9cos2θ+27cos23θ18cosθcos3θ)-\dfrac{a^2}{16}(-9\cos^2 \theta+27\cos^2 3\theta-18\cos\theta \cos 3\theta)

=9a28(1cos4θ)=9a24sin22θ=-\dfrac{9a^2}{8}(1-\cos4\theta)=-\dfrac{9a^2}{4}\sin^22\theta

R=27a38sin32θ9a24sin22θR=\dfrac{\dfrac{27a^3}{8}\sin^32\theta}{|-\dfrac{9a^2}{4}\sin^22\theta|}

=3a2sin2θ=3asinθcosθ=\dfrac{3a}{2}\sin2\theta=3a\sin\theta \cos\theta

R=3asinθcosθR=3a\sin\theta \cos\theta

2.


x=a(cosθ+θsinθ)x=a(\cos \theta+\theta \sin \theta)

y=a(sinθθcosθ)y=a(\sin \theta-\theta \cos \theta)

x=a(sinθ+sinθ+θcosθ)=a(θcosθ)x'=a(-\sin \theta+\sin \theta+\theta\cos \theta)=a(\theta \cos \theta)

x=a(cosθθsinθ)x''=a(\cos \theta-\theta \sin \theta )

y=a(cosθcosθ+θsinθ)=a(θsinθ)y'=a(\cos \theta-\cos \theta+\theta \sin \theta)=a(\theta \sin \theta)

y=a(sinθ+θcosθ)y''=a(\sin \theta+\theta \cos \theta )

R=((x)2+(y)2)3/2xyxyR=\dfrac{((x')^2+(y')^2)^{3/2}}{|x'y''-x''y'|}

(x)2+(y)2=a2θ2(cos62θ+sin2θ)=a2θ2(x')^2+(y')^2=a^2\theta^2(\cos62\theta+\sin^2\theta)=a^2\theta^2

((x)2+(y)2)3/2=a3θ3((x')^2+(y')^2)^{3/2}=a^3\theta^3

xyxy=a2(θsinθcosθ+θ2cos2θ)x'y''-x''y'=a^2(\theta\sin\theta \cos\theta+\theta^2\cos^2\theta)

a2(θsinθcosθθ2sin2θ)=a2θ2-a^2(\theta\sin\theta \cos\theta-\theta^2\sin^2\theta)=a^2\theta^2

R=a3θ3a2θ2=aθR=\dfrac{a^3\theta^3}{|a^2\theta^2|}=a\theta


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS