Find the equation of the tangent to the plane f(x,y) at the point (-1,2)
F(X,y )= 2x^2 -e^2x-3y-8
"f(x,y) = 2x^2-e^{2x} - 3y-8" (-1,2)
Definition:
Let S be a surface defined by a differentiable function z = f(x, y), and let "P_o = (x_o,y_o)" be a point in the domain of f. Then, the equation of the tangent plane to S at "P_o" is given by
"z = f(x_o, y_o) + f_x(x_o - y_o) +f_y(x_o, y_o)(y-y_o)" 1-equation
First, we must calculate "f_x(x,y)" and "f_y(x, y)", the we use 1-equation with "x_0 = -1" and
"y_o = 2"
"f_x(x,y) = 4x-2e^{2x}"
"f_y(x,y) = -3"
"f(-1,2) = 2(-1)^2-e^{2*(-1)}-3*2-8=-11-\\frac{1}{e^2}"
"f_x(-1,2) = 4*(-1)-2e^{2*(-1)}=-4-\\frac{2}{e^2}"
"f_y(-1,2) = -3"
Then 1-equation becomes
z = "-11-\\frac{1}{e^2}" + "(-4-\\frac{2}{e^2})(x+1)" + "(-3)(y+3)"
"z= -11-\\frac{1}{e^2} - 4x-\\frac{2x}{e^2}-4-\\frac{1}{e^2}-3y-9"
z = "-4x-\\frac{2x}{e^2}-3y-\\frac{1}{e^2}-24"
Comments
Leave a comment