Answer to Question #148559 in Differential Geometry | Topology for anjali

Question #148559
Calculate the normal and the geodesic curvatures of the following curves on
the given surfaces:
(b) The right circular helix γ(θ) = (a cos θ, a sin θ, bθ) on the right circular cylinder
σ(u, v) = (a cos u, a sin u, v), where a, b > 0 are constants.
1
Expert's answer
2020-12-07T15:58:40-0500
SolutionSolution

The unit normal vector is given by (http://mathonline.wikidot.com/the-frenet-serret-formulas): N(s)=T(s)T(s)N(s)=\frac{T'(s)}{||T'(s)||} , where T(s)=r(s)r(s),T(s)=\frac{\vec{r}'(s)}{||\vec{r}'(s)||},

where r(s)r(s) is an arc-length parametrization of r(t)\vec{r}(t)

r(t)\vec{r}(t).


(b) We calculate the length of the curve between [0,2π)[0,2\pi) and get:


For the the The normal curvature is related to the second fundamental form, and an expression for it is where N\vec{N}is related to the second fundamental form, and an expression for it is


kn=Lu˙2+2Mu˙v˙+Nv˙2k_n=L \dot{u}^2+2M\dot{u}\dot{v}+N\dot{v}^2


Where there is the surface on the paraboloid σ(u,v)=(u,v,u2+v2)\sigma (u,v)=(u, v, u^2+v^2) then

L=σuuN, M=σuvN,L=σvvN,L=\sigma_{uu} \cdot \vec{N},\ M=\sigma_{uv} \cdot \vec{N}, L=\sigma_{vv} \cdot \vec{N},

where N\vec{N}is the normal vector to the surface.


But on the paraboloid, z=0z=0. So, σuu=σuv=σvv=0\sigma_{uu}=\sigma_{uv}=\sigma_{vv}=0 and also L=M=N=0L=M=N=0 thus kn=0k_n=0



Geodesic Curvature;

I=02π(x(θ))2+(y(θ))2+(z(θ))2dθ=02πa2sin2(θ)+a2cos2(θ)+b2dθ=2πa2+b2I=\int_{0}^{2\pi}\sqrt{(x'(\theta))^2+(y'(\theta))^2+(z'(\theta))^2}d\theta=\\\int_{0}^{2\pi}\sqrt{a^2sin^2(\theta)+a^2cos^2(\theta)+b^2}d\theta=2\pi\sqrt{a^2+b^2}


We make a change of variables: s=θa2+b2s=\theta\sqrt{a^2+b^2} . Then the curve takes the form:

x(s)=acos(sa2+b2);y(s)=asin(sa2+b2);  z(s)=bsa2+b2x(s)=a\,cos(\frac{s}{\sqrt{a^2+b^2}}); y(s)=a\,sin(\frac{s}{\sqrt{a^2+b^2}});\,\,z(s)=b\frac{s}{\sqrt{a^2+b^2}}


In case we consider an interval s[0,2πa2+b2)s\in[0,2\pi\sqrt{a^2+b^2})s[0,2πa2+b2)s\in[0,2\pi\sqrt{a^2+b^2}) we receive an arc-length parametrization.

r(s)=(aa2+b2sin(sa2+b2),aa2+b2cos(sa2+b2),ba2+b2)\vec{r}'(s)=(-\frac{a}{\sqrt{a^2+b^2}}\,sin(\frac{s}{\sqrt{a^2+b^2}}),\frac{a}{\sqrt{a^2+b^2}}\,cos(\frac{s}{\sqrt{a^2+b^2}}),\frac{b}{\sqrt{a^2+b^2}});

r(s)=1||\vec{r}'(s)||=1r(s)=1||\vec{r}'(s)||=1.

T(s)=r(s)T(s)=\vec{r}'(s);

T(s)=(aa2+b2sin(sa2+b2),aa2+b2cos(sa2+b2),0)T'(s)=(-\frac{a}{{a^2+b^2}}\,sin(\frac{s}{\sqrt{a^2+b^2}}),\frac{a}{{a^2+b^2}}\,cos(\frac{s}{{a^2+b^2}}),0) ;

N(s)=T(s)T(s)=a2+b2a(aa2+b2sin(sa2+b2),aa2+b2cos(sa2+b2),0)N'(s)=\frac{T'(s)}{||T'(s)||}=\frac{a^2+b^2}{|a|}(-\frac{a}{{a^2+b^2}}\,sin(\frac{s}{\sqrt{a^2+b^2}}),\frac{a}{{a^2+b^2}}\,cos(\frac{s}{{a^2+b^2}}),0)

The geodesic curvature is: kg=(r,r,n)r3k_g=\frac{(r',r'',n)}{|r'|^3} .The normal vector for the parametric surface is: n=ru×rv=ijkasinuacosu0001=(acosu,asinu,0)n=r_u\times r_v=\begin{vmatrix} i & j& k \\ -a\,sin\,u & a\,cos\,u&0\\ 0 & 0&1 \end{vmatrix}=(a\,cos\,u,a\,sin\,u,0) . We set u=θu=\theta and get the following curvature:

kg=(r,r,n)r3=asinθacosθbacosθasinθ0acosθasinθ0(a2+b2)3/2=1(a2+b2)3/2b  0=0k_g=\frac{(r',r'',n)}{|r'|^3}=\frac{\begin{vmatrix} -a\,sin\,\theta & a\,cos\,\theta\,&b \\ -a\,cos\,\theta & -a\,sin\,\theta&0\\ a\,cos\,\theta & a\,sin\,\theta&0 \end{vmatrix}}{(a^2+b^2)^{3/2}}=\frac{1}{(a^2+b^2)^{3/2}}b\,\,0=0

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment