Question #145639
The third fundamental form of a surface σ(u, v) is
||N̂u|| ^2 du^2 + 2N̂u.N̂v dudv + ||N̂v||^2 dv^2
where N̂ (u, v) is the standard unit normal to σ(u, v). Let FIII be the associated 2 × 2
symmetric matrix.
a) ) Show that FIII − 2HFII + KFI = 0, where K and H are the Gaussian and mean
curvatures, respectively, of σ.
1
Expert's answer
2020-11-24T14:34:12-0500

I=dS2=a11(du1)2+2a12du1du2+a22(du2)2aij=(ri,rj);i,j=1,2II=b11(du1)2+2b12du1du2+b22(du2)2bij=(rij,n);i,j=1,2III=dn2=(nu1)2(du1)2+2nu1nu2du1du2+(nu2)2(du2)2((nu1)2nu1nu2nu1nu2(nu2)2)2H(b11b12b12b22)+K(a11a12a12a22)=0H=12(k1+k2) — mean curvature2H=k1+k2=a11b22+a22b112a12b12a11a22a122K=k1k2=b11b22b122a11a22a122 — Gaussian curvatureI = dS^2=a_{11}(du^1)^2+2a_{12}du^1du^2+a_{22}(du^2)^2\\ a_{ij}=(\overline{r_i}, \overline{r_j}); i,j=1,2\\ II=b_{11}(du^1)^2+2b_{12}du^1du^2+b_{22}(du^2)^2\\ b_{ij}=(\overline{r_{ij}},\overline{n}); i,j=1,2\\ III=d\overline{n}^2=(\overline{n_{u^1}})^2(du^1)^2+2\overline{n_{u^1}}\overline{n_{u^2}}du^1du^2+(\overline{n_{u^2}})^2(du^2)^2\\ \begin{pmatrix} (\overline{n_{u^1}})^2 & \overline{n_{u^1}}\overline{n_{u^2}} \\ \overline{n_{u^1}}\overline{n_{u^2}} & (\overline{n_{u^2}})^2 \end{pmatrix} -2H \begin{pmatrix} b_{11} & b_{12} \\ b_{12} & b_{22} \end{pmatrix} +K \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} =0\\ H=\frac{1}{2}(k_1+k_2)\text{ --- mean curvature}\\ 2H=k_1+k_2=\frac{a_{11}b_{22}+a_{22}b_{11}-2a_{12}b_{12}}{a_{11}a_{22}-a_{12}^2}\\ K=k_1\cdot k_2=\frac{b_{11}b_{22}-b_{12}^2}{a_{11}a_{22}-a_{12}^2}\text{ --- Gaussian curvature}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS