Find the derivatives of x and y with respect to the parameter θ:
x′=−3asinθcos2θ,
y′=3asin2θcosθ,
x′′=−3acos3θ+6asin2θcosθ
y′′=−3asin3θ+6asinθcos2θ
To calculate the coordinates of the center of curvature (ξ,η), we use the formulas:
ξ=x−y′x′y′′−x′′y′(x′)2+(y′)2
η=y+x′x′y′′−x′′y′(x′)2+(y′)2
(x′)2+(y′)2=9a2sin2θcos4θ+9a2sin4θcos2θ=
=9a2sin2θcos2θ
x′y′′−x′′y′=9a2sin4θcos2θ−18a2sin2θcos4θ
+9a2sin2θcos4θ−18a2sin4θcos2θ=
=9a2sin2θcos2θ−18a2sin2θcos2θ
=−9a2sin2θcos2θ
x′y′′−x′′y′(x′)2+(y′)2=−1
ξ=acos3θ+3asin2θcosθ
η=asin3θ+3asinθcos2θConsequently, the evolute of the four cusped hypocycloid is described by the following parametric equations:
ξ=acos3θ+3asin2θcosθ
η=asin3θ+3asinθcos2θ
Thus the evolute of an astroid is an astroid .
Comments
Leave a comment