Answer to Question #145446 in Differential Geometry | Topology for Dolly

Question #145446
Find the evolute of the four cusped hypocycloid
x=a cos^3θ y=a sin^3θ
1
Expert's answer
2020-11-26T13:40:42-0500

Find the derivatives of xx and yy with respect to the parameter θ:\theta :


x=3asinθcos2θ,x'=-3a\sin \theta\cos^2\theta,


y=3asin2θcosθ,y'=3a\sin^2 \theta\cos\theta,

x=3acos3θ+6asin2θcosθx''=-3a\cos^3\theta+6a\sin^2 \theta\cos\theta


y=3asin3θ+6asinθcos2θy''=-3a\sin^3 \theta+6a\sin \theta\cos^2\theta

To calculate the coordinates of the center of curvature (ξ,η),(\xi,\eta),  we use the formulas:


ξ=xy(x)2+(y)2xyxy\xi=x-y'\dfrac{(x')^2+(y')^2}{x'y''-x''y'}

η=y+x(x)2+(y)2xyxy\eta=y+x'\dfrac{(x')^2+(y')^2}{x'y''-x''y'}

(x)2+(y)2=9a2sin2θcos4θ+9a2sin4θcos2θ=(x')^2+(y')^2=9a^2 \sin^2\theta\cos^4\theta+9a^2 \sin^4\theta\cos^2\theta=

=9a2sin2θcos2θ=9a^2 \sin^2\theta\cos^2\theta

xyxy=9a2sin4θcos2θ18a2sin2θcos4θx'y''-x''y'=9a^2\sin^4 \theta\cos^2\theta-18a^2\sin^2 \theta\cos^4\theta

+9a2sin2θcos4θ18a2sin4θcos2θ=+9a^2\sin^2 \theta\cos^4\theta-18a^2\sin^4 \theta\cos^2\theta=

=9a2sin2θcos2θ18a2sin2θcos2θ=9a^2\sin^2 \theta\cos^2\theta-18a^2\sin^2 \theta\cos^2\theta

=9a2sin2θcos2θ=-9a^2\sin^2 \theta\cos^2\theta


(x)2+(y)2xyxy=1\dfrac{(x')^2+(y')^2}{x'y''-x''y'}=-1

ξ=acos3θ+3asin2θcosθ\xi=a\cos^3\theta+3a\sin^2\theta \cos\theta

η=asin3θ+3asinθcos2θ\eta=a\sin^3\theta+3a\sin\theta \cos^2\theta

Consequently, the evolute of the four cusped hypocycloid is described by the following parametric equations:


ξ=acos3θ+3asin2θcosθ\xi=a\cos^3\theta+3a\sin^2\theta \cos\theta

η=asin3θ+3asinθcos2θ\eta=a\sin^3\theta+3a\sin\theta \cos^2\theta


Thus the evolute of an astroid is an astroid .






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment