Find the derivatives of "x" and "y" with respect to the parameter "\\theta :"
"y'=3a\\sin^2 \\theta\\cos\\theta,"
"x''=-3a\\cos^3\\theta+6a\\sin^2 \\theta\\cos\\theta"
To calculate the coordinates of the center of curvature "(\\xi,\\eta)," we use the formulas:
"\\eta=y+x'\\dfrac{(x')^2+(y')^2}{x'y''-x''y'}"
"(x')^2+(y')^2=9a^2 \\sin^2\\theta\\cos^4\\theta+9a^2 \\sin^4\\theta\\cos^2\\theta="
"=9a^2 \\sin^2\\theta\\cos^2\\theta"
"x'y''-x''y'=9a^2\\sin^4 \\theta\\cos^2\\theta-18a^2\\sin^2 \\theta\\cos^4\\theta"
"+9a^2\\sin^2 \\theta\\cos^4\\theta-18a^2\\sin^4 \\theta\\cos^2\\theta="
"=9a^2\\sin^2 \\theta\\cos^2\\theta-18a^2\\sin^2 \\theta\\cos^2\\theta"
"=-9a^2\\sin^2 \\theta\\cos^2\\theta"
"\\xi=a\\cos^3\\theta+3a\\sin^2\\theta \\cos\\theta"
"\\eta=a\\sin^3\\theta+3a\\sin\\theta \\cos^2\\theta"
Consequently, the evolute of the four cusped hypocycloid is described by the following parametric equations:
"\\eta=a\\sin^3\\theta+3a\\sin\\theta \\cos^2\\theta"
Thus the evolute of an astroid is an astroid .
Comments
Leave a comment