"\\rho =\\frac{(r^2+(r')^2)^\\frac{3}{2}}{r^2+2(r')^2-rr''}"
"r'=-a\\sin\\theta; r''=-a\\cos \\theta"
"\\rho=\\frac{(a^2(1+\\cos \\theta)^2+a^2 \\sin^2\\theta)^\\frac{3}{2}}{a^2(1+\\cos \\theta)^2+2a^2\\sin^2\\theta+a^2(1+\\cos \\theta)\\cos \\theta}="
"=\\frac{(a^2+2a^2\\cos \\theta+a^2\\cos^2\\theta+a^2 \\sin^2\\theta)^\\frac{3}{2}}{a^2+2a^2\\cos \\theta+a^2\\cos^2\\theta+2a^2\\sin^2\\theta+a^2\\cos \\theta+a^2 \\cos^2 \\theta}="
"=\\frac{(a^2+2a^2\\cos \\theta+a^2)^\\frac{3}{2}}{a^2+2a^2\\cos \\theta+2a^2+a^2\\cos \\theta}=" "\\frac{(2a^2+2a^2\\cos \\theta)^\\frac{3}{2}}{3a^2+3a^2\\cos \\theta}=\\frac{2^{\\frac{3}{2}}a^3(1+\\cos \\theta)^\\frac{3}{2}}{3a^2+3a^2\\cos \\theta}="
"=\\frac{2^{\\frac{3}{2}}a^3(1+\\cos \\theta )^\\frac{1}{2}}{3a^2}=\\frac{2^{\\frac{3}{2}}a}{3}(1+\\cos \\theta)^{\\frac{1}{2}}"
"\\frac{\\rho^2}{r}=\\frac{2^3a^2}{3^2}\\frac{(1+\\cos \\theta)}{a(1+\\cos \\theta)}=\\frac{8a}{9}\\, is \\, constant"
Comments
Leave a comment