ρ=r2+2(r′)2−rr′′(r2+(r′)2)23
r′=−asinθ;r′′=−acosθ
ρ=a2(1+cosθ)2+2a2sin2θ+a2(1+cosθ)cosθ(a2(1+cosθ)2+a2sin2θ)23=
=a2+2a2cosθ+a2cos2θ+2a2sin2θ+a2cosθ+a2cos2θ(a2+2a2cosθ+a2cos2θ+a2sin2θ)23=
=a2+2a2cosθ+2a2+a2cosθ(a2+2a2cosθ+a2)23= 3a2+3a2cosθ(2a2+2a2cosθ)23=3a2+3a2cosθ223a3(1+cosθ)23=
=3a2223a3(1+cosθ)21=3223a(1+cosθ)21
rρ2=3223a2a(1+cosθ)(1+cosθ)=98aisconstant
Comments