Question #145444
Prove that for cardiod r=a(1+cosθ)
ρ^2/r is constant
1
Expert's answer
2020-11-26T07:42:40-0500

ρ=(r2+(r)2)32r2+2(r)2rr\rho =\frac{(r^2+(r')^2)^\frac{3}{2}}{r^2+2(r')^2-rr''}

r=asinθ;r=acosθr'=-a\sin\theta; r''=-a\cos \theta

ρ=(a2(1+cosθ)2+a2sin2θ)32a2(1+cosθ)2+2a2sin2θ+a2(1+cosθ)cosθ=\rho=\frac{(a^2(1+\cos \theta)^2+a^2 \sin^2\theta)^\frac{3}{2}}{a^2(1+\cos \theta)^2+2a^2\sin^2\theta+a^2(1+\cos \theta)\cos \theta}=

=(a2+2a2cosθ+a2cos2θ+a2sin2θ)32a2+2a2cosθ+a2cos2θ+2a2sin2θ+a2cosθ+a2cos2θ==\frac{(a^2+2a^2\cos \theta+a^2\cos^2\theta+a^2 \sin^2\theta)^\frac{3}{2}}{a^2+2a^2\cos \theta+a^2\cos^2\theta+2a^2\sin^2\theta+a^2\cos \theta+a^2 \cos^2 \theta}=

=(a2+2a2cosθ+a2)32a2+2a2cosθ+2a2+a2cosθ==\frac{(a^2+2a^2\cos \theta+a^2)^\frac{3}{2}}{a^2+2a^2\cos \theta+2a^2+a^2\cos \theta}= (2a2+2a2cosθ)323a2+3a2cosθ=232a3(1+cosθ)323a2+3a2cosθ=\frac{(2a^2+2a^2\cos \theta)^\frac{3}{2}}{3a^2+3a^2\cos \theta}=\frac{2^{\frac{3}{2}}a^3(1+\cos \theta)^\frac{3}{2}}{3a^2+3a^2\cos \theta}=

=232a3(1+cosθ)123a2=232a3(1+cosθ)12=\frac{2^{\frac{3}{2}}a^3(1+\cos \theta )^\frac{1}{2}}{3a^2}=\frac{2^{\frac{3}{2}}a}{3}(1+\cos \theta)^{\frac{1}{2}}

ρ2r=23a232(1+cosθ)a(1+cosθ)=8a9isconstant\frac{\rho^2}{r}=\frac{2^3a^2}{3^2}\frac{(1+\cos \theta)}{a(1+\cos \theta)}=\frac{8a}{9}\, is \, constant


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS