Consider straight line: y=cx+d
Curvature of a twice differentiable function y=f(x) is given by k=(1+(y′)2)23∣y′′∣
y′=(cx+d)′=c
y′′=(c)′=0
k=(1+c2)23∣0∣=0
Let r(t)={x0+p1t,y0+p2t,z0+p3t} be the parametric equation of straight line. Then we can find the torsion using following formula:
k2=(y′z′′−y′′z′)2+(x′′z′−x′z′′)2+(x′y′′−x′′y′)2x′′′(y′z′′−y′′z′)+y′′′(x′′z′−x′z′′)+z′′′(x′y′′−x′′y′)
then:
k2=(p2⋅0−0⋅p3)2+(0⋅p3−p1⋅0)2+p1⋅0−0⋅p2′)20⋅(p2⋅0−0⋅p3)+0⋅(0⋅p3−p1⋅0)+0⋅(p1⋅0−0⋅p2)=00 i.e. undefined
Comments