Question #149787
Show that. The curvature and torsion of the straight line is zero.
1
Expert's answer
2020-12-13T18:54:45-0500

Consider straight line: y=cx+dy=cx+d

Curvature of a twice differentiable function y=f(x)y=f(x) is given by k=y(1+(y)2)32k=\frac{|y''|}{(1+(y')^2)^\frac{3}{2}}

y=(cx+d)=cy'=(cx+d)'=c

y=(c)=0y''=(c)'=0

k=0(1+c2)32=0k=\frac{|0|}{(1+c^2)^\frac{3}{2}}=0

Let r(t)={x0+p1t,y0+p2t,z0+p3t}r(t)=\{x_0+p_1t,y_0+p_2t,z_0+p_3 t\}  be the parametric equation of straight line. Then we can find the torsion using following formula:

k2=x(yzyz)+y(xzxz)+z(xyxy)(yzyz)2+(xzxz)2+(xyxy)2k_2=\frac{x'''(y'z''-y''z')+y'''(x''z'-x'z'')+z'''(x'y''-x''y')}{(y'z''-y''z')^2+(x''z'-x'z'')^2+(x'y''-x''y')^2}

then:

k2=0(p200p3)+0(0p3p10)+0(p100p2)(p200p3)2+(0p3p10)2+p100p2)2=00k_2=\frac{0\cdot(p_2\cdot0-0\cdot p_3)+0\cdot(0\cdot p_3-p_1\cdot 0)+0\cdot(p_1\cdot 0-0\cdot p_2)}{(p_2\cdot0-0\cdot p_3)^2+(0\cdot p_3-p_1\cdot 0)^2+p_1\cdot 0-0\cdot p_2')^2}= \frac{0}{0} i.e. undefined


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS