Solution: We know that "The cylindrical coordinates are denoted by (r,θ,z) and rectangular coordinates are denoted by (x,y,z) "
To convert from cylindrical coordinates to rectangular coordinates we use the equations
x=r cos θ
y=r sin θ and
z=z
(1) Given cylindrical coordinates are (5,6π,3)
∴(r,θ,z)=(5,6π,3)
Now, to find rectangular coordinates, we have
x=r cos θ=5 cos (6π)=5(23)=253
y=r sin θ=5 sin (6π)=5(21)=25
z=z=3
Therefore rectangular coordinates (x,y,z)=(253,25,3)
(2) Given cylindrical coordinates are (6,3π,−5)
∴(r,θ,z)=(6,3π,−5)
Now, to find rectangular coordinates, we have
x=r cos θ=6 cos (3π)=6(21)=26=3
y=r sin θ=6 sin (3π)=6(23)=263=33
z=z=−5
Therefore rectangular coordinates (x,y,z)=(3,33,−5)
Comments