Question #151515
Change the following from cylindrical coordinates to rectangular coordinates
1) (5, π/6, 3)
2) (6, π/3, -5)
1
Expert's answer
2020-12-17T18:51:39-0500

Solution: We know that "The cylindrical coordinates are denoted by (r,θ,z)(r,\theta,z) and rectangular coordinates are denoted by (x,y,z)(x,y,z) "

To convert from cylindrical coordinates to rectangular coordinates we use the equations

x=r cos θx=r~cos~\theta

y=r sin θy=r~sin~\theta and

z=zz=z


(1) Given cylindrical coordinates are (5,π6,3)(5, \frac{\pi}{6},3)

(r,θ,z)=(5,π6,3)\therefore (r,\theta,z)=(5, \frac{\pi}{6},3)

Now, to find rectangular coordinates, we have

x=r cos θ=5 cos (π6)=5(32)=532x=r~cos~\theta=5~cos~(\frac{\pi}{6})=5(\frac{\sqrt{3}}{2})=\frac{5\sqrt{3}}{2}


y=r sin θ=5 sin (π6)=5(12)=52y=r~sin~\theta=5~sin~(\frac{\pi}{6})=5(\frac{1}{2})=\frac{5}{2}

z=z=3z=z=3

Therefore rectangular coordinates (x,y,z)=(532,52,3)(x,y,z)=(\frac{5\sqrt{3}}{2},\frac{5}{2},3)

(2) Given cylindrical coordinates are (6,π3,5)(6, \frac{\pi}{3},-5)

(r,θ,z)=(6,π3,5)\therefore (r,\theta,z)=(6, \frac{\pi}{3},-5)

Now, to find rectangular coordinates, we have

x=r cos θ=6 cos (π3)=6(12)=62=3x=r~cos~\theta=6~cos~(\frac{\pi}{3})=6(\frac{1}{2})=\frac{6}{2}=3


y=r sin θ=6 sin (π3)=6(32)=632=33y=r~sin~\theta=6~sin~(\frac{\pi}{3})=6(\frac{\sqrt{3}}{2})=\frac{6\sqrt{3}}{2}=3\sqrt{3}

z=z=5z=z=-5

Therefore rectangular coordinates (x,y,z)=(3,33,5)(x,y,z)=(3,3\sqrt{3},-5)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS