Solution: We know that "The cylindrical coordinates are denoted by "(r,\\theta,z)" and rectangular coordinates are denoted by "(x,y,z)" "
To convert from cylindrical coordinates to rectangular coordinates we use the equations
"x=r~cos~\\theta"
"y=r~sin~\\theta" and
"z=z"
(1) Given cylindrical coordinates are "(5, \\frac{\\pi}{6},3)"
"\\therefore (r,\\theta,z)=(5, \\frac{\\pi}{6},3)"
Now, to find rectangular coordinates, we have
"x=r~cos~\\theta=5~cos~(\\frac{\\pi}{6})=5(\\frac{\\sqrt{3}}{2})=\\frac{5\\sqrt{3}}{2}"
"y=r~sin~\\theta=5~sin~(\\frac{\\pi}{6})=5(\\frac{1}{2})=\\frac{5}{2}"
"z=z=3"
Therefore rectangular coordinates "(x,y,z)=(\\frac{5\\sqrt{3}}{2},\\frac{5}{2},3)"
(2) Given cylindrical coordinates are "(6, \\frac{\\pi}{3},-5)"
"\\therefore (r,\\theta,z)=(6, \\frac{\\pi}{3},-5)"
Now, to find rectangular coordinates, we have
"x=r~cos~\\theta=6~cos~(\\frac{\\pi}{3})=6(\\frac{1}{2})=\\frac{6}{2}=3"
"y=r~sin~\\theta=6~sin~(\\frac{\\pi}{3})=6(\\frac{\\sqrt{3}}{2})=\\frac{6\\sqrt{3}}{2}=3\\sqrt{3}"
"z=z=-5"
Therefore rectangular coordinates "(x,y,z)=(3,3\\sqrt{3},-5)"
Comments
Leave a comment