(1) Given spherical coordinates: (5,2π,2π)
Require to find the rectangular coordinates.
Now (ρ,θ,φ)=(5,2π,2π)
⇒ρ=5,θ=2π,φ=2π
The relation between the rctangular coordinates and spherical coordinates are given by the equaitons
x=ρsinφcosθ,y=ρsinφsinθ,z=ρcosφ
Subtituting the given values, we get
x=5sin(2π)cos(2π)=5(1)(0)=0
y=5sin(2π)sin(2π)=5(1)(1)=5
z=5cos(2π)=5(0)=0
Therefore, (x,y,z)=(0,5,0)
(2) Gievn: (4,3π,32pi)
x=4sin(32pi)cos(3pi)=4(23)(21)=3
y=4sin(32pi)sin(3pi)=4(23)(23)=3
z=4cos(32pi)=4(−21)=−2
Therefore, (x,y,z)=(3,3,−2)
(3)Given: (0,11π,5π)
⇒ρ=0,θ=11π,φ=5π
x=0sin(5pi)cos(11pi)=0
y=0sin(5pi)sin(11pi)=0
z=0cos(5pi)=0
Therefore, (x,y,z)=(0,0,0)
(4) Given: (2,35pi,43pi)
⇒ρ=2,θ=35pi,φ=43pi
x=2sin(43pi)cos(35pi)=2(21)(21)=21
y=2sin(43pi)sin(35pi)=2(21)(2−3)=−23
z=2cos(43pi)=2(−21)=−2
Therefore, (x,y,z)=(21,−23,−2)
Comments