1. (a) possible samples
N = 5 n = 2 N=5~~~n=2 N = 5 n = 2
Sample no
= C 5 2 = ( 5 2 ) = 10 =C_5^2= \binom{5}{2}=10 = C 5 2 = ( 2 5 ) = 10 samples
( 0 , 2 ) ( 0 , 4 ) ( 0 , 6 ) ( 0 , 8 ) ( 2 , 4 ) ( 2 , 6 ) ( 2 , 8 ) ( 4 , 6 ) ( 4 , 8 ) ( 6 , 8 ) (0,2)(0,4)(0,6)(0,8)(2,4)(2,6)(2,8)(4,6)(4,8)(6,8) ( 0 , 2 ) ( 0 , 4 ) ( 0 , 6 ) ( 0 , 8 ) ( 2 , 4 ) ( 2 , 6 ) ( 2 , 8 ) ( 4 , 6 ) ( 4 , 8 ) ( 6 , 8 )
(b) Sampling distribution of the sample means for the size of 3 and the standard variation.
N = 5 n = 3 N=5~~~n=3 N = 5 n = 3
sample no
= C 5 3 = ( 5 3 ) = 10 =C_5^3= \binom{5}{3}=10 = C 5 3 = ( 3 5 ) = 10 samples
n o . s a m p l e s m e a n s 1. 0 , 2 , 4 2.00 2. 0 , 2 , 6 2.67 3. 0 , 2 , 8 3.33 4. 0 , 4 , 6 3.33 5. 0 , 4 , 8 4.00 6. 0 , 6 , 8 4.67 7. 2 , 4 , 6 4.00 8. 2 , 4 , 8 4.67 9. 2 , 6 , 8 5.33 10. 4 , 6 , 8 6.00 \def\arraystretch{1.5}\begin{array}{c:c:c}no.&samples&means\\\hline1.&0,2,4&2.00\\\hdashline2.&0,2,6&2.67\\\hdashline3.&0,2,8&3.33\\\hdashline4.&0,4,6&3.33\\\hdashline5.&0,4,8&4.00\\\hdashline6.&0,6,8&4.67\\\hdashline7.&2,4,6&4.00\\\hdashline8.&2,4,8&4.67\\\hdashline9.&2,6,8&5.33\\\hdashline10.&4,6,8&6.00\\\hline\end{array} n o . 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. s am pl es 0 , 2 , 4 0 , 2 , 6 0 , 2 , 8 0 , 4 , 6 0 , 4 , 8 0 , 6 , 8 2 , 4 , 6 2 , 4 , 8 2 , 6 , 8 4 , 6 , 8 m e an s 2.00 2.67 3.33 3.33 4.00 4.67 4.00 4.67 5.33 6.00
X ˉ f f ( X ˉ ) X ˉ f ( X ˉ ) ( X ˉ ) 2 f ( X ˉ ) 2.00 1 1 / 10 0.200 0.400 2.67 1 1 / 10 0.267 0.711 3.33 2 1 / 5 0.67 2.222 4.00 2 1 / 5 0.800 3.200 4.67 2 1 / 5 0.933 4.356 5.33 1 1 / 10 0.533 2.844 6.00 1 1 / 10 0.60 3.600 ∑ 10 1 4.00 17.33 \def\arraystretch{1.5}\begin{array}{c:c:c:c:c}\bar X&f&f(\bar X)&\bar X f(\bar X)&(\bar X)^2f(\bar X)\\\hline2.00&1&1/10&0.200&0.400\\\hdashline2.67&1&1/10&0.267&0.711\\\hdashline3.33&2&1/5&0.67&2.222\\\hdashline4.00&2&1/5&0.800&3.200\\\hdashline4.67&2&1/5&0.933&4.356\\\hdashline5.33&1&1/10&0.533&2.844\\\hdashline6.00&1&1/10&0.60&3.600\\\hline\sum &10&1&4.00&17.33\\\hline\end{array} X ˉ 2.00 2.67 3.33 4.00 4.67 5.33 6.00 ∑ f 1 1 2 2 2 1 1 10 f ( X ˉ ) 1/10 1/10 1/5 1/5 1/5 1/10 1/10 1 X ˉ f ( X ˉ ) 0.200 0.267 0.67 0.800 0.933 0.533 0.60 4.00 ( X ˉ ) 2 f ( X ˉ ) 0.400 0.711 2.222 3.200 4.356 2.844 3.600 17.33
Standard variation
σ = ∑ ( X ˉ ) 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) 2 \sigma=\sqrt{\sum (\bar X)^2f(\bar X)-(\sum \bar X f(\bar X)^2} σ = ∑ ( X ˉ ) 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) 2
σ = 17.33 − 4 2 \sigma = \sqrt {17.33-4^2} σ = 17.33 − 4 2
σ = 1.153 \sigma =1.153 σ = 1.153
2. (a) Possible samples
N = 5 n = 3 N=5~~~n=3 N = 5 n = 3
Sample no
C 5 3 = ( 5 3 ) = 10 C_5^3= \binom{5}{3}=10 C 5 3 = ( 3 5 ) = 10 samples
( 1 , 3 , 5 ) ( 1 , 3 , 7 ) ( 1 , 3 , 9 ) ( 1 , 5 , 7 ) ( 1 , 5 , 9 ) ( 1 , 7 , 9 ) ( 3 , 5 , 7 ) ( 3 , 5 , 9 ) ( 3 , 7 , 9 ) ( 5 , 7 , 9 ) (1,3,5)(1,3,7)(1,3,9)(1,5,7)(1,5,9)(1,7,9)(3,5,7)(3,5,9)(3,7,9)(5,7,9) ( 1 , 3 , 5 ) ( 1 , 3 , 7 ) ( 1 , 3 , 9 ) ( 1 , 5 , 7 ) ( 1 , 5 , 9 ) ( 1 , 7 , 9 ) ( 3 , 5 , 7 ) ( 3 , 5 , 9 ) ( 3 , 7 , 9 ) ( 5 , 7 , 9 )
(b) Sampling distribution of the sample means for the size of 3 and the standard variation.
n o . s a m p l e s m e a n s 1 1 , 3 , 5 3.00 2. 1 , 3 , 7 3.67 3. 1 , 3 , 9 4.33 4. 1 , 5 , 7 4.33 5. 1 , 5 , 9 5.00 6. 1 , 7 , 9 5.67 7. 3 , 5 , 7 5.00 8. 3 , 5 , 9 5.67 9. 3 , 7 , 9 6.33 10. 5 , 7 , 9 7.00 \def\arraystretch{1.5}\begin{array}{c:c:c}no.&samples&means\\\hline1&1,3,5&3.00\\\hdashline2.&1,3,7&3.67\\\hdashline3.&1,3,9&4.33\\\hdashline4.&1,5,7&4.33\\\hdashline5.&1,5,9&5.00\\\hdashline6.&1,7,9&5.67\\\hdashline7.&3,5,7&5.00\\\hdashline8.&3,5,9&5.67\\\hdashline9.&3,7,9&6.33\\\hdashline10.&5,7,9&7.00\\\hline\end{array} n o . 1 2. 3. 4. 5. 6. 7. 8. 9. 10. s am pl es 1 , 3 , 5 1 , 3 , 7 1 , 3 , 9 1 , 5 , 7 1 , 5 , 9 1 , 7 , 9 3 , 5 , 7 3 , 5 , 9 3 , 7 , 9 5 , 7 , 9 m e an s 3.00 3.67 4.33 4.33 5.00 5.67 5.00 5.67 6.33 7.00
X ˉ f f ( X ˉ ) X ˉ f ( X ˉ ) ( X ˉ ) 2 f ( X ˉ ) 3.00 1 1 / 10 0.300 0.900 3.67 1 1 / 10 0.367 1.346 4.33 2 1 / 5 0.867 3.750 5.00 2 1 / 5 1.000 5.000 5.67 2 1 / 5 1.134 6.430 6.33 1 1 / 10 0.633 4.00 7.00 1 1 / 10 0.700 4.900 ∑ 10 1 5.00 26.327 \def\arraystretch{1.5}\begin{array}{c:c:c:c:c}\bar X&f&f(\bar X)&\bar X f(\bar X)&(\bar X)^2f(\bar X)\\\hline3.00&1&1/10&0.300&0.900\\\hdashline3.67&1&1/10&0.367&1.346\\\hdashline4.33&2&1/5&0.867&3.750\\\hdashline5.00&2&1/5&1.000&5.000\\\hdashline5.67&2&1/5&1.134&6.430\\\hdashline6.33&1&1/10&0.633&4.00\\\hdashline7.00&1&1/10&0.700&4.900\\\hline\sum &10&1&5.00&26.327\\\hline\end{array} X ˉ 3.00 3.67 4.33 5.00 5.67 6.33 7.00 ∑ f 1 1 2 2 2 1 1 10 f ( X ˉ ) 1/10 1/10 1/5 1/5 1/5 1/10 1/10 1 X ˉ f ( X ˉ ) 0.300 0.367 0.867 1.000 1.134 0.633 0.700 5.00 ( X ˉ ) 2 f ( X ˉ ) 0.900 1.346 3.750 5.000 6.430 4.00 4.900 26.327
Standard variation
σ = ∑ ( X ˉ ) 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) 2 \sigma=\sqrt{\sum (\bar X)^2f(\bar X)-(\sum \bar X f(\bar X)^2} σ = ∑ ( X ˉ ) 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) 2
σ = 26.327 − 5 2 \sigma= \sqrt {26.327-5^2} σ = 26.327 − 5 2
σ = 1.152 \sigma=1.152 σ = 1.152
3. N = 5 μ = 45 σ = 10 N=5~~\mu=45~~\sigma=10 N = 5 μ = 45 σ = 10
(a) sample mean is equal to the population mean
X ‾ = μ = 45 \overline{X}=\mu=45 X = μ = 45
(b) Standard deviation
σ x ˉ = σ n = 10 36 \sigma_{\bar x}=\dfrac{\sigma}{\sqrt n}=\dfrac{10}{\sqrt{36}} σ x ˉ = n σ = 36 10
= 1.667 =1.667 = 1.667
Comments