Solution
Population size N = 5 N=5 N = 5
Weights obtained = 52 , 61 , 68 , 78 , 84 =52,61,68,78,84 = 52 , 61 , 68 , 78 , 84
Sample size n = 2 n=2 n = 2
1. Possible samples
= C 5 2 = ( 5 2 ) = 10 =C_5^2= \binom{5}{2}=10 = C 5 2 = ( 2 5 ) = 10 samples
n o S a m p l e S a m p l e m e a n 1 52 , 61 56.5 2 52 , 68 60.0 3 52 , 78 65.0 4 52 , 84 68.0 5 61 , 68 64.5 6 61 , 78 69.5 7 61 , 84 72.5 8 68 , 78 73.0 9 68 , 84 76.0 10 78 , 84 81.0 ~~~~\def\arraystretch{1.5}\begin{array}{c:c:c}no
&Sample& Sample ~mean\\\hline1&52,61&56.5\\\hdashline2&52,68&60.0\\\hdashline3&52,78&65.0\\\hdashline4&52,84&68.0\\\hdashline5&61,68&64.5\\\hdashline6&61,78&69.5\\\hdashline7&61,84&72.5\\\hdashline8&68,78&73.0\\\hdashline9&68,84&76.0\\\hdashline10&78,84&81.0\\\hline\end{array} n o 1 2 3 4 5 6 7 8 9 10 S am pl e 52 , 61 52 , 68 52 , 78 52 , 84 61 , 68 61 , 78 61 , 84 68 , 78 68 , 84 78 , 84 S am pl e m e an 56.5 60.0 65.0 68.0 64.5 69.5 72.5 73.0 76.0 81.0
2. Sampling distribution of the sample means
m e a n f r e q p r o b 56.5 1 1 / 10 60.0 1 1 / 10 64.5 1 1 / 10 65.0 1 1 / 10 68.0 1 1 / 10 69.5 1 1 / 10 72.5 1 1 / 10 73.0 1 1 / 10 76.0 1 1 / 10 81.0 1 1 / 10 ~~~~~\def\arraystretch{1.5}\begin{array}{c:c:c}mean&freq& prob\\\hline56.5&1&1/10\\\hdashline60.0&1&1/10\\\hdashline64.5&1&1/10\\\hdashline65.0&1&1/10\\\hdashline68.0&1&1/10\\\hdashline69.5&1&1/10\\\hdashline72.5&1&1/10\\\hdashline73.0&1&1/10\\\hdashline76.0&1&1/10\\\hdashline81.0&1&1/10\\\hline\end{array} m e an 56.5 60.0 64.5 65.0 68.0 69.5 72.5 73.0 76.0 81.0 f re q 1 1 1 1 1 1 1 1 1 1 p ro b 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10
3. Mean of the population.
μ = ∑ X i N \mu=\dfrac{\sum X_i}{N} μ = N ∑ X i
μ = 52 + 61 + 68 + 78 + 84 5 \mu=\dfrac{52+61+68+78+84}{5} μ = 5 52 + 61 + 68 + 78 + 84
μ = 68.6 \mu =68.6 μ = 68.6
4. Standard deviation
σ = ∑ ( X i − X ˉ ) 2 N \sigma=\sqrt{\dfrac{\sum (X_i-\bar X)^2}{N}} σ = N ∑ ( X i − X ˉ ) 2
X i X i − X ˉ ( X i − X ˉ ) 2 56.5 − 12.1 146.41 60.0 − 8.6 73.96 64.5 − 4.1 16.81 65.0 − 3.6 12.96 68.0 − 0.6 0.36 69.5 0.9 0.81 72.5 3.9 15.21 73.0 4.4 19.36 76.0 7.4 54.76 81.0 12.4 153.76 ∑ 494.40 ~~~\def\arraystretch{1.5}\begin{array}{c:c:c}X_i&X_i-\bar X&(X_i-\bar X)^2\\\hline56.5&-12.1&146.41\\\hdashline60.0&-8.6&73.96\\\hdashline64.5&-4.1&16.81\\\hdashline65.0&-3.6&12.96\\\hdashline68.0&-0.6&0.36\\\hdashline69.5&0.9&0.81\\\hdashline72.5&3.9&15.21\\\hdashline73.0&4.4&19.36\\\hdashline76.0&7.4&54.76\\\hdashline81.0&12.4&153.76\\\hline\sum&&494.40\\\hline\end{array} X i 56.5 60.0 64.5 65.0 68.0 69.5 72.5 73.0 76.0 81.0 ∑ X i − X ˉ − 12.1 − 8.6 − 4.1 − 3.6 − 0.6 0.9 3.9 4.4 7.4 12.4 ( X i − X ˉ ) 2 146.41 73.96 16.81 12.96 0.36 0.81 15.21 19.36 54.76 153.76 494.40
σ = 494.40 5 = 9.944 \sigma=\sqrt{\dfrac{494.40}{5}}=9.944 σ = 5 494.40 = 9.944
5. Mean of the sampling distribution
μ x = ∑ X P ( X ) \mu_x=\sum XP(X) μ x = ∑ XP ( X )
μ x = 56.5 ( 0.1 ) + 60.0 ( 0.1 ) + 64.5 ( 0.1 ) + 65.0 ( 0.1 ) + 68.0 ( 0.1 ) + 69.5 ( 0.1 ) + 72.5 ( 0.1 ) + 73.0 ( 0.1 ) + 76.0 ( 0.1 ) + 81.0 ( 0.1 ) \mu_x=56.5(0.1)+60.0(0.1)+64.5(0.1)+65.0(0.1)+68.0(0.1)+69.5(0.1)+72.5(0.1)+73.0(0.1)+76.0(0.1)+81.0(0.1) μ x = 56.5 ( 0.1 ) + 60.0 ( 0.1 ) + 64.5 ( 0.1 ) + 65.0 ( 0.1 ) + 68.0 ( 0.1 ) + 69.5 ( 0.1 ) + 72.5 ( 0.1 ) + 73.0 ( 0.1 ) + 76.0 ( 0.1 ) + 81.0 ( 0.1 )
μ x = 68.6 \mu_x=68.6 μ x = 68.6
6. Standard deviation of the sampling distribution of the sample means.
σ x = σ N = 9.944 5 \sigma_x=\dfrac{\sigma}{\sqrt N}=\dfrac{9.944}{\sqrt 5} σ x = N σ = 5 9.944
σ x = 4.45 \sigma_x=4.45 σ x = 4.45
7. Verification
The central limit theory states that if you take samples of larger and larger size from any population, then the mean x ‾ \overline{x} x of the sample tends to get closer and closer to μ μ μ and the standard deviation gets smaller.
(a) μ = μ x ‾ ( 68.6 = 68.6 ) \mu=\mu_{\overline x} ~~~(68.6=68.6) μ = μ x ( 68.6 = 68.6 )
hence verified.
(b) σ > σ x ‾ ( 9.944 > 4.45 ) \sigma >\sigma_{\overline x}~~~(9.944>4.45) σ > σ x ( 9.944 > 4.45 )
hence verified.
Comments