A poll is given, showing 35% are in favor of a new building project.
If 9 people are chosen at random, what is the probability that at least 5 of them favor the new building project?
Probability = (Please show your answer to 4 decimal places)
X∼Bin(9,0.35)P(X⩾5)=P(X=5)+P(X=6)+P(X=7)+P(X=8)+P(X=9)==C95⋅0.355⋅(1−0.35)4+C96⋅0.356⋅(1−0.35)3+C97⋅0.357⋅(1−0.35)2+C98⋅0.358⋅(1−0.35)+0.359=0.171719X\sim Bin\left( 9,0.35 \right) \\P\left( X\geqslant 5 \right) =P\left( X=5 \right) +P\left( X=6 \right) +P\left( X=7 \right) +P\left( X=8 \right) +P\left( X=9 \right) =\\=C_{9}^{5}\cdot 0.35^5\cdot \left( 1-0.35 \right) ^4+C_{9}^{6}\cdot 0.35^6\cdot \left( 1-0.35 \right) ^3+C_{9}^{7}\cdot 0.35^7\cdot \left( 1-0.35 \right) ^2+C_{9}^{8}\cdot 0.35^8\cdot \left( 1-0.35 \right) +0.35^9=0.171719X∼Bin(9,0.35)P(X⩾5)=P(X=5)+P(X=6)+P(X=7)+P(X=8)+P(X=9)==C95⋅0.355⋅(1−0.35)4+C96⋅0.356⋅(1−0.35)3+C97⋅0.357⋅(1−0.35)2+C98⋅0.358⋅(1−0.35)+0.359=0.171719
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments