Suppose the probability density of X is given by
f(x) = {(kxe)^(-x^2), X>0
=0, Otherwise
(a) find the value of k.
(b) find the distribution function of X, i.e., the cumulative density function of X.
a. "\u222b _{\n\u2212\u221e}^\n\u221e\n\u200b\n f(x)dx=1"
So "\\int_0^1kxe^{-x^2}dx=k(-e^{-x^2}\/2)|_0^1=0.316k=1"
k=3.16
b.
"F(x)=\\int_0^x3.16te^{-t^2}dt=3.16(-e^{-t^2}\/2)|_0^x=3.16(-e^{-x^2}\/2)-3.16\/2+C"
Comments
Leave a comment