Answer to Question #242557 in Statistics and Probability for PRS

Question #242557

Suppose X1 and X2 are random variables of the discrete type which have the joint pmf p(x1,x2)=(x1+2x2)/18, (x1,x2)=(1,1),(1,2),(2,1),(2,2), zero elsewhere. Determine the conditional mean and variance of X2,given X1=x1, for x1=1 or 2. Also ,compute E(3X1-2X2)


1
Expert's answer
2021-10-17T16:43:32-0400

Let x1=1x_1=1

Conditional distribution f(x2x1=1)f(x_2|x_1=1) is:

x212f(x2x1=1)1/68/18=3858\def\arraystretch{1.5} \begin{array}{c:c:c} x_2 & 1 & 2 \\ \hline f(x_2|x_1=1) & \frac{1/6}{8/18}=\frac{3}{8} &\frac{ 5}{8} \\ \end{array}

Then conditional mean

M(x2x1=1)=138+258=138;M(x_2|x_1=1)=1\cdot \frac{3}{8}+2\cdot \frac{5}{8}=\frac{13}{8};

M(x22x1=1)=138+458=238M(x_2^2|x_1=1)=1\cdot \frac{3}{8}+4\cdot \frac{5}{8}=\frac{23}{8}

Conditional variance

Var(x2x1=1)=M(x22x1=1)(M(x2x1=1))2=238(138)2=1564Var(x_2|x_1=1)=M(x_2^2|x_1=1)-\left( M(x_2|x_1=1) \right)^2=\\ \frac{23}{8}-\left(\frac{13}{8}\right)^2=\frac{15}{64}

Now let be x1=2x_1=2

In this case Conditional distribution f(x2x1=2)f(x_2|x_1=2) is:

x212f(x2x1=2)4181018=2535\def\arraystretch{1.5} \begin{array}{c:c:c} x_2 & 1 & 2 \\ \hline f(x_2|x_1=2) & \frac{\frac{4}{18}}{\frac{10}{18}}=\frac{2}{5} & \frac{3}{5} \\ \end{array}

And further we have:

M(x2x1=2)=125+235=85;M(x_2|x_1=2)=1\cdot \frac{2}{5}+2\cdot \frac{3}{5}=\frac{8}{5};

M(x22x1=2)=125+435=145M(x_2^2|x_1=2)=1\cdot \frac{2}{5}+4\cdot \frac{3}{5}=\frac{14}{5}

Var(x2x1=2)=145(85)2=625Var(x_2|x_1=2)=\frac{14}{5}-(\frac{8}{5})^2=\frac{6}{25}

For computing E(3X12X2)E(3X_1-2X_2) we use the table of (x1,x2)(x_1,x_2) distribution:

(x1,x2)(1,1)(1,2)(2,1)(2,2)f(x1,x2)3185184186183x12x21142\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} (x_1,x_2) & (1,1) & (1,2)&(2,1)&(2,2) \\ \hline f(x_1,x_2) & \frac{3}{18} & \frac{5}{18}&\frac{4}{18}&\frac{6}{18}\\ \hdashline 3\cdot x_1-2\cdot x_2 & 1 & -1&4&2 \end{array}

Therefore

E(3X12X2)=31+5(1)+44+6218=2618=139E(3X_1-2X_2)=\frac{3\cdot 1+5\cdot(-1)+4\cdot 4+6\cdot 2}{18}=\frac{26}{18}=\frac{13}{9}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment