Let x1=1
Conditional distribution f(x2∣x1=1) is:
x2f(x2∣x1=1)18/181/6=83285
Then conditional mean
M(x2∣x1=1)=1⋅83+2⋅85=813;
M(x22∣x1=1)=1⋅83+4⋅85=823
Conditional variance
Var(x2∣x1=1)=M(x22∣x1=1)−(M(x2∣x1=1))2=823−(813)2=6415
Now let be x1=2
In this case Conditional distribution f(x2∣x1=2) is:
x2f(x2∣x1=2)11810184=52253
And further we have:
M(x2∣x1=2)=1⋅52+2⋅53=58;
M(x22∣x1=2)=1⋅52+4⋅53=514
Var(x2∣x1=2)=514−(58)2=256
For computing E(3X1−2X2) we use the table of (x1,x2) distribution:
(x1,x2)f(x1,x2)3⋅x1−2⋅x2(1,1)1831(1,2)185−1(2,1)1844(2,2)1862
Therefore
E(3X1−2X2)=183⋅1+5⋅(−1)+4⋅4+6⋅2=1826=913
Comments
Leave a comment