Suppose X1 and X2 are random variables of the discrete type which have the joint pmf p(x1,x2)=(x1+2x2)/18, (x1,x2)=(1,1),(1,2),(2,1),(2,2), zero elsewhere. Determine the conditional mean and variance of X2,given X1=x1, for x1=1 or 2. Also ,compute E(3X1-2X2)
Let "x_1=1"
Conditional distribution "f(x_2|x_1=1)" is:
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c}\n x_2 & 1 & 2 \\\\ \\hline\n f(x_2|x_1=1) & \\frac{1\/6}{8\/18}=\\frac{3}{8} &\\frac{ 5}{8} \\\\\n \\end{array}"
Then conditional mean
"M(x_2|x_1=1)=1\\cdot \\frac{3}{8}+2\\cdot \\frac{5}{8}=\\frac{13}{8};"
"M(x_2^2|x_1=1)=1\\cdot \\frac{3}{8}+4\\cdot \\frac{5}{8}=\\frac{23}{8}"
Conditional variance
"Var(x_2|x_1=1)=M(x_2^2|x_1=1)-\\left( M(x_2|x_1=1) \\right)^2=\\\\\n\\frac{23}{8}-\\left(\\frac{13}{8}\\right)^2=\\frac{15}{64}"
Now let be "x_1=2"
In this case Conditional distribution "f(x_2|x_1=2)" is:
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c}\n x_2 & 1 & 2 \\\\ \\hline\n f(x_2|x_1=2) & \\frac{\\frac{4}{18}}{\\frac{10}{18}}=\\frac{2}{5} & \\frac{3}{5} \\\\\n \\end{array}"
And further we have:
"M(x_2|x_1=2)=1\\cdot \\frac{2}{5}+2\\cdot \\frac{3}{5}=\\frac{8}{5};"
"M(x_2^2|x_1=2)=1\\cdot \\frac{2}{5}+4\\cdot \\frac{3}{5}=\\frac{14}{5}"
"Var(x_2|x_1=2)=\\frac{14}{5}-(\\frac{8}{5})^2=\\frac{6}{25}"
For computing "E(3X_1-2X_2)" we use the table of "(x_1,x_2)" distribution:
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n (x_1,x_2) & (1,1) & (1,2)&(2,1)&(2,2) \\\\ \\hline\n f(x_1,x_2) & \\frac{3}{18} & \\frac{5}{18}&\\frac{4}{18}&\\frac{6}{18}\\\\\n \\hdashline\n 3\\cdot x_1-2\\cdot x_2 & 1 & -1&4&2\n\\end{array}"
Therefore
"E(3X_1-2X_2)=\\frac{3\\cdot 1+5\\cdot(-1)+4\\cdot 4+6\\cdot 2}{18}=\\frac{26}{18}=\\frac{13}{9}"
Comments
Leave a comment