Given that random variable Yis defined as Y=X2, where X∼N(0,1).
Then for y<0, P(Y<y)=0 and
for y≥0,
P(Y<y)=P(X2<y)=P(−y<X<y)
=FX(y)−FX(−x)=FX(y)−(1−FX(y))
=2FX(y)−1
fY(y)=dyd(2FX(y)−1)=2dydFX(y)
=2dyd(∫−∞y2π1e−t2/2dt)
=2(2π1)e−(y)2/2(2y1)
=21(π1)e−y/2(y1) Use π=Γ(21). Then
fY(y)=2⋅Γ(21)1y−1/2e−y/2where F and f are the cdf and pdf of the corresponding random variables.
Then Y=X2∼χ12 .
Comments