Obtain linear regression equation of Y on X and X on Y for the bivariate function expressed as follows
f(x,y)={ 2/3(x+2y) 0<x<1 0<y<1
{ 0 otherwise
1.partial densities
f(x)=
"\\int _{-\\infty}^{\\infty}f(x,y)dy=\\\\\n1)0,\\space x\\notin\\space[0,1]"
"2)\\frac{2}{3}\\cdot \\int_0^1(x+2y)\\cdot dy=(xy+y^2)|_0^1\\cdot \\frac{2}{3}=\\\\\n\\frac{2}{3}\\cdot(x+1),x\\in [0,1]"
f(y)=
"\\int _{-\\infty}^{\\infty}f(x,y)dx=\\\\\n1)0,\\space y\\notin\\space[0,1]"
"2)\\frac{2}{3}\\cdot \\int_0^1(x+2y)\\cdot dx=(x^2\/2+2yx)|_0^1\\cdot \\frac{2}{3}=\\\\\n\\frac{1+4y}{3},y\\in [0,1]"
"2)\\frac{2}{3}\\cdot \\int_0^1(x+2y)\\cdot dx=(x^2\/2+2yx)|_0^1\\cdot \\frac{2}{3}=\\\\\n\\frac{1+4y}{3},y\\in [0,1]"
2 Partial means
"mx=\\frac{2}{3}\\int_0^1(x+1)\\cdot x\\cdot dx=\\\\\n\\frac{2}{3}\\cdot (x^2\/3+x^2\/2)|_0^1=5\/9"
"my=\\frac{1}{3}\\int_0^1(4y+1)\\cdot y\\cdot dy=\\\\\n\\frac{1}{3}\\cdot (4y^3\/3+y^2\/2)|_0^1=11\/18"
3 Partial dispersions
"\\sigma_x^2=\\frac{2}{3}\\int_0^1(x+1)\\cdot x^2\\cdot dx-(5\/9)^2=\\\\\n\\frac{2}{3}\\cdot (x^4\/4+x^3\/3)|_0^1-\\frac{25}{81}=\\frac{14}{36}-\\frac{25}{81}=\\\\\n\\frac{126-100}{324}=\\frac{13}{162}"
"\\sigma_y^2=\\frac{1}{3}\\int_0^1(4y+1)\\cdot y^2\\cdot dx-(11\/18)^2=\\\\\n\\frac{1}{3}\\cdot (y^4+y^3\/3)|_0^1-\\frac{121}{324}=\\frac{4}{9}-\\frac{121}{324}=\\\\\n\\frac{144-121}{324}=\\frac{23}{324}"
4 Correlation moment
"K=\\frac{2}{3}\\int_0^1\\int_0^1(x-5\/9)(y-11\/18)\\cdot(x+2y)dxdy=\\\\\n\\frac{2}{3}\\cdot \\int_0^1(y-\\frac{11}{18})\\int_0^1(x^2-\\frac{5}{9}\\cdot x+2xy-10y\/9)dxdy=\\\\\n\\frac{2}{3}\\cdot \\int_0^1(y-\\frac{11}{18})(1\/3-5\/18+y-10y\/9)dy=\\\\\n\\frac{1}{27}\\cdot \\int_0^1(y-\\frac{11}{18})(1-2y)\/18\\cdot dy=\\\\"
"=\\frac{-2\/3+11\/18+1\/2-11\/18}{27}=-\\frac{1}{162}"
Regression y on x
"x=\\frac{K_{xy}}{\\sigma_y^2}(x-m_y)+m_x="
"=\\frac{-1\/162}{13\/162}(x-5\/9)+11\/18="
"-\\frac{1}{13}\\cdot x+153\/234"
Regression x on y
"x=\\frac{K_{xy}}{\\sigma_y^2}(y-m_y)+m_x="
"=\\frac{-1\/162}{23\/324}(y-11\/18)+5\/9=\\\\\n=-\\frac{2}{23}\\cdot y+14\/23"
Comments
Leave a comment