1.partial densities
f(x)=
∫−∞∞f(x,y)dy=1)0, x∈/ [0,1]
2)32⋅∫01(x+2y)⋅dy=(xy+y2)∣01⋅32=32⋅(x+1),x∈[0,1]
f(y)=
∫−∞∞f(x,y)dx=1)0, y∈/ [0,1]
2)32⋅∫01(x+2y)⋅dx=(x2/2+2yx)∣01⋅32=31+4y,y∈[0,1]
2)32⋅∫01(x+2y)⋅dx=(x2/2+2yx)∣01⋅32=31+4y,y∈[0,1]
2 Partial means
mx=32∫01(x+1)⋅x⋅dx=32⋅(x2/3+x2/2)∣01=5/9
my=31∫01(4y+1)⋅y⋅dy=31⋅(4y3/3+y2/2)∣01=11/18
3 Partial dispersions
σx2=32∫01(x+1)⋅x2⋅dx−(5/9)2=32⋅(x4/4+x3/3)∣01−8125=3614−8125=324126−100=16213
σy2=31∫01(4y+1)⋅y2⋅dx−(11/18)2=31⋅(y4+y3/3)∣01−324121=94−324121=324144−121=32423
4 Correlation moment
K=32∫01∫01(x−5/9)(y−11/18)⋅(x+2y)dxdy=32⋅∫01(y−1811)∫01(x2−95⋅x+2xy−10y/9)dxdy=32⋅∫01(y−1811)(1/3−5/18+y−10y/9)dy=271⋅∫01(y−1811)(1−2y)/18⋅dy=
=27−2/3+11/18+1/2−11/18=−1621
Regression y on x
x=σy2Kxy(x−my)+mx=
=13/162−1/162(x−5/9)+11/18=
−131⋅x+153/234
Regression x on y
x=σy2Kxy(y−my)+mx=
=23/324−1/162(y−11/18)+5/9==−232⋅y+14/23
Comments