Question #242535

Obtain linear regression equation of Y on X and X on Y for the bivariate function expressed as follows


f(x,y)={ 2/3(x+2y) 0<x<1 0<y<1

{ 0 otherwise


1
Expert's answer
2021-10-12T01:58:03-0400

1.partial densities

f(x)=

f(x,y)dy=1)0, x [0,1]\int _{-\infty}^{\infty}f(x,y)dy=\\ 1)0,\space x\notin\space[0,1]

2)2301(x+2y)dy=(xy+y2)0123=23(x+1),x[0,1]2)\frac{2}{3}\cdot \int_0^1(x+2y)\cdot dy=(xy+y^2)|_0^1\cdot \frac{2}{3}=\\ \frac{2}{3}\cdot(x+1),x\in [0,1]

f(y)=

f(x,y)dx=1)0, y [0,1]\int _{-\infty}^{\infty}f(x,y)dx=\\ 1)0,\space y\notin\space[0,1]

2)2301(x+2y)dx=(x2/2+2yx)0123=1+4y3,y[0,1]2)\frac{2}{3}\cdot \int_0^1(x+2y)\cdot dx=(x^2/2+2yx)|_0^1\cdot \frac{2}{3}=\\ \frac{1+4y}{3},y\in [0,1]

2)2301(x+2y)dx=(x2/2+2yx)0123=1+4y3,y[0,1]2)\frac{2}{3}\cdot \int_0^1(x+2y)\cdot dx=(x^2/2+2yx)|_0^1\cdot \frac{2}{3}=\\ \frac{1+4y}{3},y\in [0,1]

2 Partial means

mx=2301(x+1)xdx=23(x2/3+x2/2)01=5/9mx=\frac{2}{3}\int_0^1(x+1)\cdot x\cdot dx=\\ \frac{2}{3}\cdot (x^2/3+x^2/2)|_0^1=5/9

my=1301(4y+1)ydy=13(4y3/3+y2/2)01=11/18my=\frac{1}{3}\int_0^1(4y+1)\cdot y\cdot dy=\\ \frac{1}{3}\cdot (4y^3/3+y^2/2)|_0^1=11/18

3 Partial dispersions

σx2=2301(x+1)x2dx(5/9)2=23(x4/4+x3/3)012581=14362581=126100324=13162\sigma_x^2=\frac{2}{3}\int_0^1(x+1)\cdot x^2\cdot dx-(5/9)^2=\\ \frac{2}{3}\cdot (x^4/4+x^3/3)|_0^1-\frac{25}{81}=\frac{14}{36}-\frac{25}{81}=\\ \frac{126-100}{324}=\frac{13}{162}

σy2=1301(4y+1)y2dx(11/18)2=13(y4+y3/3)01121324=49121324=144121324=23324\sigma_y^2=\frac{1}{3}\int_0^1(4y+1)\cdot y^2\cdot dx-(11/18)^2=\\ \frac{1}{3}\cdot (y^4+y^3/3)|_0^1-\frac{121}{324}=\frac{4}{9}-\frac{121}{324}=\\ \frac{144-121}{324}=\frac{23}{324}

4 Correlation moment

K=230101(x5/9)(y11/18)(x+2y)dxdy=2301(y1118)01(x259x+2xy10y/9)dxdy=2301(y1118)(1/35/18+y10y/9)dy=12701(y1118)(12y)/18dy=K=\frac{2}{3}\int_0^1\int_0^1(x-5/9)(y-11/18)\cdot(x+2y)dxdy=\\ \frac{2}{3}\cdot \int_0^1(y-\frac{11}{18})\int_0^1(x^2-\frac{5}{9}\cdot x+2xy-10y/9)dxdy=\\ \frac{2}{3}\cdot \int_0^1(y-\frac{11}{18})(1/3-5/18+y-10y/9)dy=\\ \frac{1}{27}\cdot \int_0^1(y-\frac{11}{18})(1-2y)/18\cdot dy=\\

=2/3+11/18+1/211/1827=1162=\frac{-2/3+11/18+1/2-11/18}{27}=-\frac{1}{162}

Regression y on x

x=Kxyσy2(xmy)+mx=x=\frac{K_{xy}}{\sigma_y^2}(x-m_y)+m_x=

=1/16213/162(x5/9)+11/18==\frac{-1/162}{13/162}(x-5/9)+11/18=

113x+153/234-\frac{1}{13}\cdot x+153/234

Regression x on y

x=Kxyσy2(ymy)+mx=x=\frac{K_{xy}}{\sigma_y^2}(y-m_y)+m_x=

=1/16223/324(y11/18)+5/9==223y+14/23=\frac{-1/162}{23/324}(y-11/18)+5/9=\\ =-\frac{2}{23}\cdot y+14/23



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS