Given that the joint probability distribution of the discrete random variables X and Y is given by
f(x,y)= { k(4x+3y) x=1,2,3 y=1,2
{ 0 otherwise
Find
i) The value of the constant k
ii) The marginal probability distribution function X
iii)The conditional probability distribution Y given x=2
iv) The conditional mean given X=2
i)
"7k+11k+15k+10k+14k+18k=1"
"k=\\dfrac{1}{75}"
ii)
"X=1:"
"=7\/75+10\/75=17\/75"
"X=2:"
"=11\/75+14\/75=25\/75=1\/3"
"X=3:"
"=15\/75+18\/75=33\/75=11\/25"
iii)
"P(Y=2|X=2)=14\/25"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c}\n y & 1 & 2 \\\\ \\hline\n f_{Y|X=2}(y) & 11\/25 & 14\/25 \n\\end{array}"
iv)
Comments
Leave a comment