Answer to Question #242527 in Statistics and Probability for PRS

Question #242527

Given that the joint probability distribution of the discrete random variables X and Y is given by



f(x,y)= { k(4x+3y) x=1,2,3 y=1,2

{ 0 otherwise

Find

i) The value of the constant k

ii) The marginal probability distribution function X

iii)The conditional probability distribution Y given x=2

iv) The conditional mean given X=2


1
Expert's answer
2021-10-13T07:52:55-0400

i)


XXY 12317k11k15k210k14k18kY\ \def\arraystretch{1.5} \begin{array}{c:c:c:c} & 1 & 2 & 3 \\ \hline 1 & 7k & 11k & 15k \\ \hdashline 2 & 10k & 14k & 18k \end{array}

7k+11k+15k+10k+14k+18k=17k+11k+15k+10k+14k+18k=1

k=175k=\dfrac{1}{75}

ii)


Y 12317/7511/7515/75210/7514/7518/75Y\ \def\arraystretch{1.5} \begin{array}{c:c:c:c} & 1 & 2 & 3 \\ \hline 1 & 7/75 & 11/75 & 15/75\\ \hdashline 2 & 10/75 & 14/75 & 18/75 \end{array}

X=1:X=1:


P(X=1Y=1)+P(X=1Y=2)P(X=1|Y=1)+P(X=1|Y=2)

=7/75+10/75=17/75=7/75+10/75=17/75

X=2:X=2:


P(X=2Y=1)+P(X=2Y=2)P(X=2|Y=1)+P(X=2|Y=2)

=11/75+14/75=25/75=1/3=11/75+14/75=25/75=1/3

X=3:X=3:


P(X=3Y=1)+P(X=3Y=2)P(X=3|Y=1)+P(X=3|Y=2)

=15/75+18/75=33/75=11/25=15/75+18/75=33/75=11/25


x123fX(x)17/751/311/25\def\arraystretch{1.5} \begin{array}{c:c:c:c} x & 1 & 2 & 3 \\ \hline f_X(x) & 17/75 & 1/3 & 11/25 \end{array}

iii)


P(Y=1X=2)=11/25P(Y=1|X=2)=11/25

P(Y=2X=2)=14/25P(Y=2|X=2)=14/25

y12fYX=2(y)11/2514/25\def\arraystretch{1.5} \begin{array}{c:c:c} y & 1 & 2 \\ \hline f_{Y|X=2}(y) & 11/25 & 14/25 \end{array}

iv)


E(YX=2)=1(11/25)+2(14/25)=39/25E(Y|X=2)=1(11/25)+2(14/25)=39/25


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment