Question #242553

Let X1,X2 and X3 be random variables with equal variances but with correlation coefficients ρ12=0.3,ρ13=0.5,ρ23=0.2 find the correlation coefficient of the linear function Y=X1+X2 and Y=X2+X3

1
Expert's answer
2021-10-13T15:08:39-0400

the correlation coefficient of the linear function Y=X1+X2 and Y=X2+X3:


rX1+X2,X2+X3=0.3σ2+0.5σ2+0.2σ2σX1+X2σX2+X3r_{X_1+X_2,X_2+X_3}=\frac{0.3\sigma^2+0.5\sigma^2+0.2\sigma^2}{\sigma_{X_1+X_2}\sigma_{X_2+X_3}}


Var(X1+X2)=Var(X1)+2cov(X1,X2)+Var(X2)=σ2+20.3σ2+σ2=Var(X_1+X_2)=Var(X_1)+2cov(X_1,X_2)+Var(X_2)=\sigma^2+2\cdot0.3\sigma^2+\sigma^2=

=2.6σ2=2.6\sigma^2


similarly:

Var(X2+X3)=σ2+20.2σ2+σ2=2.4σ2Var(X_2+X_3)=\sigma^2+2\cdot0.2\sigma^2+\sigma^2=2.4\sigma^2


rX1+X2,X2+X3=0.3σ2+0.5σ2+0.2σ22.6σ22.4σ2=12.62.4=0.4003r_{X_1+X_2,X_2+X_3}=\frac{0.3\sigma^2+0.5\sigma^2+0.2\sigma^2}{\sqrt{2.6\sigma^2\cdot2.4\sigma^2}}=\frac{1}{\sqrt{2.6\cdot2.4}}=0.4003


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS