Let X1,X2 and X3 be random variables with equal variances but with correlation coefficients ρ12=0.3,ρ13=0.5,ρ23=0.2 find the correlation coefficient of the linear function Y=X1+X2 and Y=X2+X3
the correlation coefficient of the linear function Y=X1+X2 and Y=X2+X3:
"r_{X_1+X_2,X_2+X_3}=\\frac{0.3\\sigma^2+0.5\\sigma^2+0.2\\sigma^2}{\\sigma_{X_1+X_2}\\sigma_{X_2+X_3}}"
"Var(X_1+X_2)=Var(X_1)+2cov(X_1,X_2)+Var(X_2)=\\sigma^2+2\\cdot0.3\\sigma^2+\\sigma^2="
"=2.6\\sigma^2"
similarly:
"Var(X_2+X_3)=\\sigma^2+2\\cdot0.2\\sigma^2+\\sigma^2=2.4\\sigma^2"
"r_{X_1+X_2,X_2+X_3}=\\frac{0.3\\sigma^2+0.5\\sigma^2+0.2\\sigma^2}{\\sqrt{2.6\\sigma^2\\cdot2.4\\sigma^2}}=\\frac{1}{\\sqrt{2.6\\cdot2.4}}=0.4003"
Comments
Leave a comment