For the given distribution:
P(X=x)=(2/3)(1/3)x ;x=0,1,2,.....,find moment generating function, mean and variance of X.
Solution:
"M_X(t)=E[e^{tx}]={\\Sigma}_0^{\\infty} e^{tx}\\frac23(\\frac13)^x\n\\\\=\\frac23{\\Sigma}_0^{\\infty} (\\frac{e^{t}}3)^x"
"=\\dfrac23[(\\frac{e^{t}}3)^0+(\\frac{e^{t}}3)^1+(\\frac{e^{t}}3)^2+...]\n\\\\=\\dfrac23[\\dfrac{1}{1-\\frac{e^{t}}3}]\n\\\\=\\dfrac2{3-e^t}"
"M'_X(t)=(2[3-e^t]^{-1})'=2(-1)(3-e^t)^{-2}(-e^t)=\\dfrac{2e^t}{(3-e^t)^2}"
"E(X)=M'_X(0)=\\dfrac{2e^0}{(3-e^0)^2}=\\dfrac12"
"M''_X(t)=[\\dfrac{2e^t}{(3-e^t)^2}]'=\\dfrac{(3-e^t)^2(2e^t)-2e^t(2(3-e^t)(-e^t))}{(3-e^t)^4}"
"E(X^2)=M''_X(0)=\\dfrac{(3-e^0)^2(2e^0)-2e^0(2(3-e^0)(-e^0))}{(3-e^0)^4}\n\\\\=\\dfrac{(2)^2(2)-2(2)(2)(-1)}{(2)^4}\n\\\\=\\dfrac{8+8}{16}=1"
"V(X)=E(X^2)-[E(X)]^2=1-(\\frac12)^2=\\frac34"
Comments
Leave a comment