Question #202282

For the given distribution:

P(X=x)=(2/3)(1/3)x ;x=0,1,2,.....,find moment generating function, mean and variance of X.


1
Expert's answer
2021-06-09T15:23:56-0400

Solution:

MX(t)=E[etx]=Σ0etx23(13)x=23Σ0(et3)xM_X(t)=E[e^{tx}]={\Sigma}_0^{\infty} e^{tx}\frac23(\frac13)^x \\=\frac23{\Sigma}_0^{\infty} (\frac{e^{t}}3)^x

=23[(et3)0+(et3)1+(et3)2+...]=23[11et3]=23et=\dfrac23[(\frac{e^{t}}3)^0+(\frac{e^{t}}3)^1+(\frac{e^{t}}3)^2+...] \\=\dfrac23[\dfrac{1}{1-\frac{e^{t}}3}] \\=\dfrac2{3-e^t}

MX(t)=(2[3et]1)=2(1)(3et)2(et)=2et(3et)2M'_X(t)=(2[3-e^t]^{-1})'=2(-1)(3-e^t)^{-2}(-e^t)=\dfrac{2e^t}{(3-e^t)^2}

E(X)=MX(0)=2e0(3e0)2=12E(X)=M'_X(0)=\dfrac{2e^0}{(3-e^0)^2}=\dfrac12

MX(t)=[2et(3et)2]=(3et)2(2et)2et(2(3et)(et))(3et)4M''_X(t)=[\dfrac{2e^t}{(3-e^t)^2}]'=\dfrac{(3-e^t)^2(2e^t)-2e^t(2(3-e^t)(-e^t))}{(3-e^t)^4}

E(X2)=MX(0)=(3e0)2(2e0)2e0(2(3e0)(e0))(3e0)4=(2)2(2)2(2)(2)(1)(2)4=8+816=1E(X^2)=M''_X(0)=\dfrac{(3-e^0)^2(2e^0)-2e^0(2(3-e^0)(-e^0))}{(3-e^0)^4} \\=\dfrac{(2)^2(2)-2(2)(2)(-1)}{(2)^4} \\=\dfrac{8+8}{16}=1

V(X)=E(X2)[E(X)]2=1(12)2=34V(X)=E(X^2)-[E(X)]^2=1-(\frac12)^2=\frac34


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS