For 25 army personnels, line of regression of weight of kidneys (Y) on weight of
heart (X) is Y=0.399X+6.934 and the line of regression of weight of heart on
weight of kidney is X−1.212Y +2.461=0. Find the correlation coefficient between
X and Y and their mean values
"Question:-\\\\\nFor\\space 25\\space army\\space personnels\\\\\n\\space line\\space of\\space regression\\space of\\space weight\\space of\\space kidneys\\space (Y)\\space on\\space weight\\space of\\space heart\\space (X)\\space is\\\\\nY=(0.399)X+6.934\\\\\nline\\space of\\space regression\\space of\\space weight\\space of\\space heart\\space (X)\\space on\\space weight\\space of\\space kidney\\space (Y)\\space is\\\\\nX=(1.212)Y\\space -2.461\\\\\nFind\\space \\\\\n(1)the\\space correlation\\space coefficient\\space between\\space X\\space and\\space Y\\space \\\\\nand\\\\\n\\space (2)their\\space mean\\space values\n\\\\------------------------------\\\\\n\n\n\n\n(1)Correlation\\space Coefficient\\\\\n\\space Y=0.399X+6.934\\space is\\space regression\\space equation\\space of\\space y\\space on\\space x\\\\\n\\space \n\u2234b_{yx}=0.399\\space ........[b_{yx}\\space is\\space coefficient\\space of\\space X\\space in\\space regression\\space equation\\space of\\space y\\space on\\space x]\\\\\n\n\nX=1.212Y-2.461\\space is\\space regression\\space equation\\space of\\space x\\space on\\space y\\\\\n\n\n\n\u2234bxy=1.212........[b_{xy}\\space is\\space coefficient\\space of\\space Y\\space in\\space regression\\space equation\\space of\\space x\\space on\\space y]\\\\\n\nCorrelation\\space Coefficient\\space \\space formula\\\\\n\nr=\\sqrt{byx\u22c5bxy}\\\\\n\nr=\\sqrt{0.399*1.212}\\\\\n\n\nr=\\sqrt{0.4836}\\\\\n\n\n\nr=0.6954\\\\\n-----------------------------------------\n\\\\\n(2)Mean\\space of\\space x\\space and\\space y\\\\\nsolve\\space both\\space equation\\space and\\space we\\space will\\space get\\space mean\\space of\\space x\\space and\\space y\\\\\ny=0.399x+6.934\\\\\n\n\u2234y-0.399x=6.934\\\\\n\nand\\\\\n\\space x-1.212y+2.461=0\\\\\n\n\u2234x-1.21y=-2.46\\\\\n\n-0.399x+y=6.934\u2192equation(1)\\\\\n\nx-1.212y=-2.461\u2192equation(2)\\\\\n\nequation(1)\u00d71\u21d2-0.399x+y=6.934\\\\\n\nequation(2)\u00d70.399\u21d20.399x-0.4836y=-0.9819\\\\\n\nAdding\\space both\u21d20.5164y=5.9521\\\\\n\n\u21d2y=\\frac{5.9521}{\\space 0.5164}\\\\\n\u21d2y=11.5258\\\\\n\nPutting\\space y=11.5258\\space in\\space equation\\space (1),\\space we\\space have\\\\\n\n-0.399x+11.5258=6.934\\\\\n\n\u21d2-0.399x=6.934-11.5258\\\\\n\n\u21d2-0.399x=-4.5918\\\\\n\n\u21d2x=\\frac{4.5918}{\\space 0.399}\\\\\n\\space \u21d2x=11.5083\\\\\n\u2234\\bar{x}=11.5083\\space and\\space \\bar{y}=11.5258\\\\"
Comments
Leave a comment