Let X1,X2,.....,Xn be random sample of size n from a distribution with probability
density function
f(X; ,0)={ (θX) to the power (θ-1) ,0<X<1 , θ>0 Obtain a maximum likeyhood
0, elsewhere.
estimator of θ.
f(X,θ)=θXθ−1,0≤X≤1,θ>0f(X,\theta)=\theta X^{\theta-1}, 0\le X\le1, \theta>0f(X,θ)=θXθ−1,0≤X≤1,θ>0
L(θ)=∏i=1nf(X,θ)L(\theta)=\prod_{i=1}^nf(X,\theta)L(θ)=∏i=1nf(X,θ)
=θn∏1n(Xi)θ−1=\theta ^n\prod_1^n(Xi)^{\theta-1}=θn∏1n(Xi)θ−1
lnL(θ)=nlnθ+(θ−1)ln∏1nXi\ln L(\theta)=n\ln\theta+(\theta-1)\ln \prod_1^n XilnL(θ)=nlnθ+(θ−1)ln∏1nXi
To maximize lnL(θ)\ln L(\theta)lnL(θ), we equate the first derivative of lnL(θ)\ln L(\theta)lnL(θ)to zero and solve for θ\thetaθ
ddθlnL(θ)=nθ+ln∏1nXi\frac{d}{d\theta}\ln L(\theta)=\frac{n}{\theta}+\ln \prod_1^n XidθdlnL(θ)=θn+ln∏1nXi
nθ+ln∏1nXi=0\frac{n}{\theta}+\ln \prod_1^n Xi=0θn+ln∏1nXi=0
nθ=−ln∏1nXi\frac{n}{\theta}=-\ln \prod_1^n Xiθn=−ln∏1nXi
θ^=−n∏1nXi\hat{\theta}=-\frac{n}{\prod_1^nXi}θ^=−∏1nXin
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments