Question #202273

Let X1,X2,.....,Xn be random sample of size n from a distribution with probability 

density function 

f(X; ,0)={ (θX) to the power (θ-1) ,0<X<1 , θ>0 Obtain a maximum likeyhood

0, elsewhere.

estimator of θ.


1
Expert's answer
2021-06-07T14:53:51-0400

f(X,θ)=θXθ1,0X1,θ>0f(X,\theta)=\theta X^{\theta-1}, 0\le X\le1, \theta>0

L(θ)=i=1nf(X,θ)L(\theta)=\prod_{i=1}^nf(X,\theta)

=θn1n(Xi)θ1=\theta ^n\prod_1^n(Xi)^{\theta-1}

lnL(θ)=nlnθ+(θ1)ln1nXi\ln L(\theta)=n\ln\theta+(\theta-1)\ln \prod_1^n Xi

To maximize lnL(θ)\ln L(\theta), we equate the first derivative of lnL(θ)\ln L(\theta)to zero and solve for θ\theta

ddθlnL(θ)=nθ+ln1nXi\frac{d}{d\theta}\ln L(\theta)=\frac{n}{\theta}+\ln \prod_1^n Xi

nθ+ln1nXi=0\frac{n}{\theta}+\ln \prod_1^n Xi=0

nθ=ln1nXi\frac{n}{\theta}=-\ln \prod_1^n Xi

θ^=n1nXi\hat{\theta}=-\frac{n}{\prod_1^nXi}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS