Question #202258

For the given bivariate probability distribution of X and Y :

 

P(X=x , Y=y)=(x2+y)/32 for x=0,1,2,3 and y=0,1.

 Find: 

 (i) P(X ≤ 1 , Y =1)

 (ii) P(X ≤ 1)

 (iii) P(Y > 0) and 

 (iv) P(Y = 1 | X = 3)


1
Expert's answer
2021-06-06T17:05:52-0400

(i) P(X1,Y=1)=P(X=0,Y=1)+P(X=1,Y=1)=132+232=332P(X\leq1,Y=1)=P(X=0,Y=1)+P(X=1,Y=1)=\frac{1}{32}+\frac{2}{32}=\frac{3}{32};

(ii) P(X1)=P(X1,Y=1)+P(X1,Y=0)=332+P(X=1,Y=0)+P(X=0,Y=0)=332+132=18P(X\leq1)=P(X\leq1,Y=1)+P(X\leq1,Y=0)=\frac{3}{32}+P(X=1,Y=0)+P(X=0,Y=0)=\frac{3}{32}+\frac{1}{32}=\frac{1}{8} (iii) P(Y>0)=P(Y=1)=x=03P(X=x,Y=1)=132+116+532+1032=1832=916P(Y>0)=P(Y=1)=\sum_{x=0}^3P(X=x,Y=1)=\frac{1}{32}+\frac{1}{16}+\frac{5}{32}+\frac{10}{32}=\frac{18}{32}=\frac{9}{16}

(iv) P(Y=1X=3)=P((Y=1)(X=3))P(X=3)=P(Y=1,X=3)P(X=3,Y=0)+P(X=3,Y=1)=1032932+1032=1019P(Y=1|X=3)=\frac{P((Y=1)\cap(X=3))}{P(X=3)}=\frac{P(Y=1,X=3)}{P(X=3,Y=0)+P(X=3,Y=1)}=\frac{\frac{10}{32}}{\frac{9}{32}+\frac{10}{32}}=\frac{10}{19}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS