For the given bivariate probability distribution of X and Y :
P(X=x , Y=y)=(x2+y)/32 for x=0,1,2,3 and y=0,1.
Find:
(i) P(X ≤ 1 , Y =1)
(ii) P(X ≤ 1)
(iii) P(Y > 0) and
(iv) P(Y = 1 | X = 3)
(i) "P(X\\leq1,Y=1)=P(X=0,Y=1)+P(X=1,Y=1)=\\frac{1}{32}+\\frac{2}{32}=\\frac{3}{32}";
(ii) "P(X\\leq1)=P(X\\leq1,Y=1)+P(X\\leq1,Y=0)=\\frac{3}{32}+P(X=1,Y=0)+P(X=0,Y=0)=\\frac{3}{32}+\\frac{1}{32}=\\frac{1}{8}" (iii) "P(Y>0)=P(Y=1)=\\sum_{x=0}^3P(X=x,Y=1)=\\frac{1}{32}+\\frac{1}{16}+\\frac{5}{32}+\\frac{10}{32}=\\frac{18}{32}=\\frac{9}{16}"
(iv) "P(Y=1|X=3)=\\frac{P((Y=1)\\cap(X=3))}{P(X=3)}=\\frac{P(Y=1,X=3)}{P(X=3,Y=0)+P(X=3,Y=1)}=\\frac{\\frac{10}{32}}{\\frac{9}{32}+\\frac{10}{32}}=\\frac{10}{19}"
Comments
Leave a comment