Solution:
f(x)=C∣x∣,∀∣x∣≤af(x)={Cx,x≥a≥0 −Cx,−a≤x<0
Now, ∫−a0Cx dx+∫0aCx dx=1
⇒C.2x2∣−a0+C.2x2∣0a=1
⇒C.2a2+C.2a2=1⇒C.a2=1⇒C=a21
We have to assume a value of a as it is not given, say, a=1
Then, C=1
So, f(x)=∣x∣,∀∣x∣≤1
Now, CDF=FX(x0)=∫−1x0(−x)dx+∫x01(x)dx=43
2−x2∣−1x0+[2x2∣x01]=43
2−x02+21+21−2x02=43
−x02=43−1−x02=−41x0=±21
Comments