Question #202256

The probability density function of a random variable X is f (x) = C | x |; Find C,

and the value of xo such that ,

FX(xo)=3/4 where F is the CDF.


1
Expert's answer
2021-06-08T01:31:05-0400

Solution:

f(x)=Cx,xaf(x)={Cx,xa0             Cx,ax<0f(x)=C|x|, \forall |x|\le a \\f(x)=\{Cx, x\ge a\ge0 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ -Cx,-a\le x<0

Now, a0Cx dx+0aCx dx=1\int_{-a}^0Cx \ dx+\int_0^{a}Cx \ dx=1

C.x22a0+C.x220a=1\Rightarrow C.\dfrac {x^2}2|_{-a}^0+C.\dfrac {x^2}2|_{0}^a=1

C.a22+C.a22=1C.a2=1C=1a2\Rightarrow C.\dfrac {a^2}2+C.\dfrac {a^2}2=1 \\ \Rightarrow C.a^2=1 \\ \Rightarrow C=\dfrac 1{a^2}

We have to assume a value of aa as it is not given, say, a=1a=1

Then, C=1C=1

So, f(x)=x,x1f(x)=|x|, \forall|x|\le 1

Now, CDF=FX(x0)=1x0(x)dx+x01(x)dx=34=F_X(x_0)=\int_{-1}^{x_0}(-x)dx+\int_{{x_0}}^{1}(x)dx=\frac34

x221x0+[x22x01]=34\dfrac{-x^2}{2}|_{-1}^{x_0}+[\dfrac{x^2}{2}|_{x_0}^{1}]=\dfrac34

x022+12+12x022=34\dfrac{-{x_0}^2}{2}+\dfrac12+\dfrac12-\dfrac{{x_0}^2}{2}=\dfrac34

x02=341x02=14x0=±12-{x_0}^2=\dfrac34-1 \\-{x_0}^2=-\dfrac14 \\x_0=\pm\dfrac12


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS