The probability density function of a random variable X is f (x) = C | x |; Find C,
and the value of xo such that ,
FX(xo)=3/4 where F is the CDF.
Solution:
"f(x)=C|x|, \\forall |x|\\le a\n\\\\f(x)=\\{Cx, x\\ge a\\ge0\n\\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ -Cx,-a\\le x<0"
Now, "\\int_{-a}^0Cx \\ dx+\\int_0^{a}Cx \\ dx=1"
"\\Rightarrow C.\\dfrac {x^2}2|_{-a}^0+C.\\dfrac {x^2}2|_{0}^a=1"
"\\Rightarrow C.\\dfrac {a^2}2+C.\\dfrac {a^2}2=1\n\\\\ \\Rightarrow C.a^2=1\n\\\\ \\Rightarrow C=\\dfrac 1{a^2}"
We have to assume a value of "a" as it is not given, say, "a=1"
Then, "C=1"
So, "f(x)=|x|, \\forall|x|\\le 1"
Now, CDF"=F_X(x_0)=\\int_{-1}^{x_0}(-x)dx+\\int_{{x_0}}^{1}(x)dx=\\frac34"
"\\dfrac{-x^2}{2}|_{-1}^{x_0}+[\\dfrac{x^2}{2}|_{x_0}^{1}]=\\dfrac34"
"\\dfrac{-{x_0}^2}{2}+\\dfrac12+\\dfrac12-\\dfrac{{x_0}^2}{2}=\\dfrac34"
"-{x_0}^2=\\dfrac34-1\n\\\\-{x_0}^2=-\\dfrac14\n\\\\x_0=\\pm\\dfrac12"
Comments
Leave a comment