Given,
μ=80σ=10
(a) P(X>75)
z=σX−μ=1075−80=−0.5
Using Standard normal distribution table:
So, P(X>75)=P(z>−0.5)=0.6915
(b) P(X<85)
z=σX−μ=1085−80=0.5
Using Standard normal distribution table:
So, P(X<85)=P(z<0.5)=0.6915
(c) between the mean and score of 90
z1=σX−μ=1080−80=0
z2=σX−μ=1090−80=1
Using Standard normal distribution table:
P(0<z<1)=0.3413
(d) between the mean and score of 50
z1=σX−μ=1080−80=0
z2=σX−μ=1050−80=−3
Using Standard normal distribution table:
P(−3<z<0)=0.4987
(e) 75 < x <85
z1=σX−μ=1075−80=−0.5
z2=σX−μ=1085−80=0.5
Using Standard normal distribution table:
P(75<X<85)=P(−0.5<z<0.5)=0.3829
Comments
Leave a comment