Answer to Question #202190 in Statistics and Probability for ADRI

Question #202190

A normal distribution has u=80 o=10. What is the probability of random selecting the following scores ?

a) x>75

b) x<85

c)between the mean of score of 90

d) between the mean of score of 50

e) 75< x >85


1
Expert's answer
2021-06-03T15:42:14-0400

Given,

μ=80σ=10\mu=80\\\sigma=10


(a) P(X>75)P(X>75)


z=Xμσ=758010=0.5z=\dfrac{X-\mu}{\sigma}=\dfrac{75-80}{10}=-0.5


Using Standard normal distribution table:

So, P(X>75)=P(z>0.5)=0.6915P(X>75)=P(z>-0.5)=0.6915




(b) P(X<85)P(X<85)


z=Xμσ=858010=0.5z=\dfrac{X-\mu}{\sigma}=\dfrac{85-80}{10}=0.5


Using Standard normal distribution table:

So, P(X<85)=P(z<0.5)=0.6915P(X<85)=P(z<0.5)=0.6915



(c) between the mean and score of 90


z1=Xμσ=808010=0z_1=\dfrac{X-\mu}{\sigma}=\dfrac{80-80}{10}=0


z2=Xμσ=908010=1z_2=\dfrac{X-\mu}{\sigma}=\dfrac{90-80}{10}=1


Using Standard normal distribution table:



P(0<z<1)=0.3413P(0<z<1)=0.3413



(d) between the mean and score of 50



z1=Xμσ=808010=0z_1=\dfrac{X-\mu}{\sigma}=\dfrac{80-80}{10}=0


z2=Xμσ=508010=3z_2=\dfrac{X-\mu}{\sigma}=\dfrac{50-80}{10}=-3


Using Standard normal distribution table:






P(3<z<0)=0.4987P(-3<z<0)=0.4987



(e) 75 < x <85



z1=Xμσ=758010=0.5z_1=\dfrac{X-\mu}{\sigma}=\dfrac{75-80}{10}=-0.5


z2=Xμσ=858010=0.5z_2=\dfrac{X-\mu}{\sigma}=\dfrac{85-80}{10}=0.5


Using Standard normal distribution table:






P(75<X<85)=P(0.5<z<0.5)=0.3829P(75<X<85)=P(-0.5<z<0.5)=0.3829

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment