Solution:
Given, MX(t)=e(3t+32t2) ...(i)
Now, mean=μ=MX′(0)
On differentiating (i) w.r.t t,
MX′(t)=e(3t+32t2)(3+64t) ...(ii)
Put t=0
MX′(0)=e0(3)=3
Thus, mean = 3
Again, differentiating (ii) w.r.t. t,
MX′′(t)=[e(3t+32t2)]′(3+64t)+e(3t+32t2)(3+64t)′=e(3t+32t2)(3+64t)2+e(3t+32t2)(64)=e(3t+32t2)[64+(3+64t)2]
Put t=0
MX′′(0)=e0[64+(3)2]=1(73)=73
Now, σ2=MX′′(0)−[MX′(0)]2=73−32=64
Then, σ=8
Assume X∼N(μ,σ)
P(X<3)=P(z<83−3)=P(z<0)=0.5
Comments