The probability density function (PDF) for a normal X∼(μ,σ2) is:
fX(x)=σ2π1e−21(σx−μ)2
For normal distribution with mean zero and variance σ2
fX(x)=σ2π1e−21(σx)2
E(∣X∣)=∫−∞∞∣x∣fX(x)dx
=2∫0∞xσ2π1e−21(σx)2dxLet z=σx
Then dx=σdz
E(∣X∣)=∫−∞∞∣x∣fX(x)dx
=2∫0∞xσ2π1e−21(σx)2dx
=∫0∞2π2σze−21z2dz
=−2π2σ[e−21z2]∞0=π2⋅σ
E(∣X∣)=π2⋅σ
Comments