Question #202265

For normal distribution with mean zero and variance σ2 show that:


E(|x|)= (√2/x)σ



1
Expert's answer
2021-06-07T18:47:58-0400

The probability density function (PDF) for a normal X(μ,σ2)X\sim (\mu, \sigma^2 ) is:


fX(x)=1σ2πe12(xμσ)2f_X(x)=\dfrac{1}{\sigma \sqrt{2\pi }}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}


For normal distribution with mean zero and variance σ2

fX(x)=1σ2πe12(xσ)2f_X(x)=\dfrac{1}{\sigma \sqrt{2\pi }}e^{-\frac{1}{2}(\frac{x}{\sigma})^2}

E(X)=xfX(x)dxE(|X|)=\displaystyle\int_{-\infin}^{\infin}|x|f_X(x)dx




=20x1σ2πe12(xσ)2dx=2\displaystyle\int_{0}^{\infin}x\dfrac{1}{\sigma \sqrt{2\pi }}e^{-\frac{1}{2}(\frac{x}{\sigma})^2}dx

Let z=xσz=\dfrac{x}{\sigma}

Then dx=σdzdx=\sigma dz


E(X)=xfX(x)dxE(|X|)=\displaystyle\int_{-\infin}^{\infin}|x|f_X(x)dx

=20x1σ2πe12(xσ)2dx=2\displaystyle\int_{0}^{\infin}x\dfrac{1}{\sigma \sqrt{2\pi }}e^{-\frac{1}{2}(\frac{x}{\sigma})^2}dx

=02σ2πze12z2dz=\displaystyle\int_{0}^{\infin}\dfrac{2\sigma}{ \sqrt{2\pi }}ze^{-\frac{1}{2}z^2}dz

=2σ2π[e12z2]0=2πσ=-\dfrac{2\sigma}{ \sqrt{2\pi }}\big[e^{-\frac{1}{2}z^2}\big]\begin{matrix} \infin \\ 0 \end{matrix}=\sqrt{\dfrac{2}{\pi}}\cdot\sigma

E(X)=2πσE(|X|)=\sqrt{\dfrac{2}{\pi}}\cdot\sigma


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS