Question (A)for a distribution ,the mean is 10,variance is 16,coefficient of skewness is +1 and coefficient of kurtosis is 4.Obtain the first tour moment about the origine i.e.,zero.Comment upon the nature of distribution .SolutionGivenMean=m1′=10,variance=m2′=16,coefficient of skewness =γ1=1,coefficient of kurtosis is β2=4.1st moment about the origine is Mean=m1′=10Second moment about the origine is m2′=variance+(n∑x)2=16+102=116Coefficient of skewness is +1=γ1=+1=m223m3m223=1623=64Coefficient of kurtosis is 4.β=4m22m4=4m4=4(16)2=1024Third moment about the origine is m3′=m3+3m2m1′+m1364+3(16)(10)+103=1544Fourth moment about the origin ism4′=m4+4m3m1′+6m2m2′+(m1′)4=1024+4(64)(10)+6(16)102+104=23184It is a positive skew distribution..
(B)Let X be a random variable with the Binomial distribution. The probability function of X isp(x)=(xn)pxqn−xthenE(X)=i=0∑nx.(xn)pxqn−x=i=0∑nx.(n−x)!x!n!pxqn−x=i=1∑n(n−x)!(x−1)!n!pxqn−x(since the x=0 term vanishes)E(X)=i=1∑n(n−x)!(x−1)!n(n−1)!(p)px−1qn−x=npi=1∑n(n−x)!(x−1)!(n−1)!px−1qn−x=npi=1∑n[(n−1)−(x−1)]!(x−1)!(n−1)!px−1qn−x=npi=1∑n(x−1n−1)px−1qn−x=np[n−1C0qn−1+n−1C1pqn−2+n−1C2p2qn−3+...+n−1Cn−1pn−1]=np[this is binomial expansion of (p+q)n−1]=np[(p+q)n−1]but we know that (p+q)=1soE(X)=np(1)n−1=npthus the mean of binomail distribution is np.nowVar(X)=E(X2)−[E(X)]2E(X2)=i=0∑nx2.(xn)pxqn−xE(X2)=i=0∑n[x(x−1)+x].(xn)pxqn−xE(X2)=i=0∑n[x(x−1)].(xn)pxqn−x+i=0∑nx.(xn)pxqn−xE(X2)=i=2∑n(n−x)!x(x−1)(x−2)!x(x−1)n!pxqn−x+npE(X2)=n(n−1)p2i=2∑n(n−x)!(x−2)!(n−2)!px−2qn−x+npE(X2)=n(n−1)p2i=2∑n[(n−2)−(x−2)]!(x−2)!(n−2)!px−2qn−x+npE(X2)=n(n−1)p2i=2∑n(x−2n−2)px−2qn−x+np=n(n−1)p2[n−2C0qn−2+n−2C1pqn−3+...+n−2Cn−2pn−2]+np=n(n−1)p2[(p+q)n−2]+npsincep+q=1,we haveE(X2)=n(n−1)p2+npusing this,Var(X)=n(n−1)p2+np−(np)2=n2p2−np2+np−n2p2=np(1−p)=npqhence the variance of binomial distribution is npq.
Comments