solve for the mean, variance, and standard deviation of the given set of data of a population.
We have population values 8, 10, 12, 14, 16 and 18
Mean and Standard Deviation and Variance of population is computed as follows:
1.) Mean=Â "\\mu = \\frac{{\\sum X}}{N}"Â ="\\frac{8+ 10,+12+ 14+16 +18}{6}=13"
2.) Standard Deviation "\\sigma = \\sqrt{\\frac{\\sum_{i=1}^{n}(x_i - \\mu)^2} {n}}" =
"\\sigma = \\sqrt{\\frac{(8-13)^2+(10-13)^2+(12-13)^2+(14-13)^2+(16-13)^2+(18-13)^2} {6}}" ="\\sqrt{\\frac{70}{6}}=\\sqrt{11.667}=3.42"
3.) Variance= "sd^2= 3.42^2= 11.67"
"\\implies \\dfrac{\\sigma }{{\\sqrt n }}\\sqrt {\\dfrac{{N \u2013 n}}{{N \u2013 1}}} = \\dfrac{{3.42}}{{\\sqrt 3 }}\\sqrt {\\dfrac{{6 \u2013 3}}{{6 \u2013 1}}} = 1.529"Â .
Comments
Leave a comment