Question #201852

a continuous random variable T has the following probability density function.

f(t) = { 32t2/128, -4≤t<4

0, otherwise


a. find E(t)

b. find Var(T)

c. Var(2T+3)



1
Expert's answer
2021-06-06T16:19:27-0400

Solution:

f(t)={32t2128,4t<4                 0,otherwisef(t) = \{ \dfrac{32t^2}{128}, -4≤t<4 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0, otherwise

(a):

E(t)=44t(32t2128)=44(t34)=[t416]44=4416(4)416=0E(t)=\int_{-4}^4t(\dfrac{32t^2}{128})=\int_{-4}^4(\dfrac{t^3}{4}) \\=[\dfrac{t^4}{16}]_{-4}^4 \\=\dfrac{4^4}{16}-\dfrac{(-4)^4}{16} \\=0

(b):

E(t2)=44(t44)=[t520]44=4520(4)520=2(4520)=102.4E(t^2)=\int_{-4}^4(\dfrac{t^4}{4}) \\=[\dfrac{t^5}{20}]_{-4}^4 \\=\dfrac{4^5}{20}-\dfrac{(-4)^5}{20} \\=2(\dfrac{4^5}{20})=102.4

Now, Var[T]=σ2=E(X2)[E(X)]2=102.402=102.4Var[T]=\sigma^2=E(X^2)-[E(X)]^2=102.4-0^2=102.4

(c):

Var[2T+3]=4 Var[T]=4(102.4)=409.6Var[2T+3]=4\ Var[T]=4(102.4)=409.6


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS