a continuous random variable T has the following probability density function.
f(t) = { 32t2/128, -4≤t<4
0, otherwise
a. find E(t)
b. find Var(T)
c. Var(2T+3)
Solution:
"f(t) = \\{ \\dfrac{32t^2}{128}, -4\u2264t<4\n\\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 0, otherwise"
(a):
"E(t)=\\int_{-4}^4t(\\dfrac{32t^2}{128})=\\int_{-4}^4(\\dfrac{t^3}{4})\n\\\\=[\\dfrac{t^4}{16}]_{-4}^4\n\\\\=\\dfrac{4^4}{16}-\\dfrac{(-4)^4}{16}\n\\\\=0"
(b):
"E(t^2)=\\int_{-4}^4(\\dfrac{t^4}{4})\n\\\\=[\\dfrac{t^5}{20}]_{-4}^4\n\\\\=\\dfrac{4^5}{20}-\\dfrac{(-4)^5}{20}\n\\\\=2(\\dfrac{4^5}{20})=102.4"
Now, "Var[T]=\\sigma^2=E(X^2)-[E(X)]^2=102.4-0^2=102.4"
(c):
"Var[2T+3]=4\\ Var[T]=4(102.4)=409.6"
Comments
Leave a comment